# 4. Specifications of the Accelerators

| Energy                  |              | 2.5 GeV                                         | (max 3.0 GeV)                    |  |  |
|-------------------------|--------------|-------------------------------------------------|----------------------------------|--|--|
| Initial stored current  | multi-bunch  | 450 mA                                          | (max 500 mA at 2.5GeV)           |  |  |
|                         | single bunch | 70 mA                                           | (max 100 mA)                     |  |  |
| Emittance               | horizontal   | 36 nm•rad                                       |                                  |  |  |
|                         | vertical     | ~0.4 nm·rad                                     |                                  |  |  |
| Circumference           |              | 187 m                                           | (bending radius = 8.66 m)        |  |  |
| RF frequency            |              | 500.1 MHz                                       |                                  |  |  |
| Harmonic number         |              | 312                                             |                                  |  |  |
| Injection               |              | 2.5-GeV Linac                                   | (electron/positron)              |  |  |
| Beam lifetime           |              | 50 h (at 400 mA)                                | I•τ ≥ 20 A•h (at 400 mA)         |  |  |
| Average vacuum pressure |              | ≤ 2 × 10 <sup>-8</sup> Pa (at 300 mA)           |                                  |  |  |
|                         |              | P/I 6-7 × 10 <sup>-8</sup> Pa (at 300 mA)       |                                  |  |  |
|                         |              | ~9 × 10 <sup>-9</sup> Pa (at 0 mA)              |                                  |  |  |
| Insertion devices       | VW#14        | Superconducting vertical wig                    | ger 5 T                          |  |  |
| U#02<br>MPW#16          |              | 60 period undulator K = $2.3$ ~                 | 0.1                              |  |  |
|                         |              | 26 period multipole wigger/undulator 1.5~0.04 T |                                  |  |  |
|                         | Revolver#19  |                                                 | Four way revolver-type undulator |  |  |
|                         | MPW#13       | 13 period multipole wigger/undulator            |                                  |  |  |
|                         | EMPW#28      | Elliptically polarized multipole                | e wigger/helical undulator       |  |  |
| SR channels             |              | SR experiment 22                                |                                  |  |  |
|                         |              | Beam diagnosis 3                                |                                  |  |  |

## Table 1. General parameters of the PF storage ring.

## Table 2. Beam parameters.

| Horizontal tune            | v <sub>x</sub> | 9.60                 |
|----------------------------|----------------|----------------------|
| Vertical tune              | $v_y$          | 4.28                 |
| Momentum compaction factor | α              | 0.0061               |
| Natural chromaticity       | Ę <sub>x</sub> | -12.5                |
|                            | ٤ <sub>y</sub> | -12.3                |
| Bunch length               | σ <sub>z</sub> | 1.0 cm               |
| Damping time               | transverse     | 7.8 ms               |
|                            | longitudinal   | 3.9 ms               |
| Energy spread              |                | $7.3 \times 10^{-4}$ |
| Radiation loss             |                | 400 keV              |



### Figure 1.

Synchrotron radiation spectra of the PF Storage Ring (2.5 GeV) and PF-AR (6.5 GeV).

Brilliance of radiation vs. photon energy for the insertion devices (U#02, MPW#13, VW#14, MPW#16, Revolver#19 and EMPW#28) and the bending magnet (Bend) of the PF, and for the insertion device (EMPW#NE1 and UNE3) of the PF-AR. The name of each source of the PF is assigned in Table 3. Several insertion devices have both undulator and wiggler modes, which are denoted by U or W, respectively. The spectral curve of each undulator (or undulator mode of multipole wiggler) is a locus of the peak of the first harmonic within the allowable range of K-parameter. Spectra of Revolver#19 are shown for four kinds of period.

Table 3. Insertion devices

pure configuration, H: hybrid configuration (NdFeB), S.C.: superconducting magnet, σ<sub>x</sub>, σ<sub>y</sub>: horizontal or vertical beam size, σ'<sub>x</sub>, σ'<sub>y</sub>: horizontal or vertical beam L: length of undulator or wiggler, G<sub>y</sub> (G<sub>x</sub>): minimum vertical (horizontal) gap height, B<sub>y</sub> (B<sub>x</sub>): maximum vertical(horizontal) magnetic field, Mag: Type of Magnet, P: Calculated spectral performances of the bend source and 6 insertion devices at the Photon Factory (2.5 GeV, 300 mA). Au: period length, N: number of periods, divergence, K<sub>n</sub> (K<sub>v</sub>): horizontal (vertical) deflection parameter, ε<sub>1</sub>/ε<sub>0</sub>: photon energy of the first harmonic (critical energy in the case of bend source or wiggler), D: photon flux in unit solid angle (photons/s•mrad<sup>2</sup>•0.1%b.w.), B: brilliance (photons/s•mm<sup>2</sup>•mrad<sup>2</sup>•0.1%b.w.), P<sub>1</sub>; total radiated power, dP/dΩ: power in unit solid angle. Different operating modes of undulator and wiggler are denoted by -U and -W, respectively.

| Name        | $\checkmark$ | z  | _    | $G_y(G_x)$ | $B_y(B_x)$ | Mag  | b×   | g     | ď     | a'<br>× | $K_n(K_v)$ | $\epsilon_{1}/\epsilon_{0}$ | D          | Ш        | ┙     | Ωb/dΩ   |
|-------------|--------------|----|------|------------|------------|------|------|-------|-------|---------|------------|-----------------------------|------------|----------|-------|---------|
|             | сш           |    | Е    | cm         | Т          |      | mm   | mm    | mrad  | mrad    |            | keV                         |            |          | kW    | kW/mrad |
| Bend        |              |    |      |            | 0.96       |      | 0.39 | 0.059 | 0 186 | 0.013   |            | 4                           | 4 R0F+13   | 3.31F+14 |       | 0.081   |
| U#02        | 9            | 60 | 3.6  | 2.8        | 0.4        | т    | 0.42 | 0.042 | 0.084 | 0.008   | 2.3        | 0.2                         | 1.49E+17   | 1.30E+18 | 0.95  | 3.93    |
| MPW#13-W    | 18           | 13 | 2.5  | 2.7        | 1.5        | т    | 0.86 | 0.019 | 0.117 | 0.018   | 25         | 6.2                         | 1.29E+15   | 1.18E+16 | 8.64  | 3.38    |
| MPW#13-U    | 18           | 13 | 2.5  | 2.7        | 1.5        | т    | 0.86 | 0.019 | 0.117 | 0.018   | N          | 0.108                       | 1.08E+16   | 9.25E+16 | 0.055 | 0.25    |
| VW#14       |              |    |      | Ð          | 5          | S.C. | 0.58 | 0.036 | 0.083 | 0.01    |            | 20.8                        | 4.84E+13   | 3.67E+14 |       | 0.42    |
| MPW#16-W    | 12           | 26 | 3.12 | 1.9        | 1.5        | т    | 0.42 | 0.042 | 0.084 | 0.008   | 16.8       | 6.2                         | 1.03E+15   | 8.95E+15 | 10.89 | 6.46    |
| MPW#16-U    | 12           | 26 | 3.12 |            |            | т    | 0.42 | 0.042 | 0.084 | 0.008   | N          | 0.163                       | 4.23E+16   | 3.63E+17 | 0.16  | 0.74    |
| Revolver#19 | 2            | 46 | 2.3  | e          | 0.28       | т    | 0.85 | 0.056 | 0.088 | 0.008   | 1.3        | 0.639                       | 1.05E+17   | 3.47E+17 | 0.28  | 1.89    |
|             | 7.2          | 32 | 2.3  | с          | 0.4        | т    | 0.85 | 0.056 | 0.088 | 0.008   | 2.7        | 0.176                       | 4.39E+16   | 1.44E+17 | 0.56  | 1.92    |
|             | 10           | 23 | 2.3  | c          | 0.54       | т    | 0.85 | 0.056 | 0.088 | 0.008   | 5          | 0.0437                      | 1.28E+16   | 4.01E+16 | 1.02  | 2.02    |
|             | 16.4         | 14 | 2.3  | c          | 0.62       | ٩    | 0.85 | 0.056 | 0.088 | 0.008   | 9.5        | 0.0078                      | 1.71E+15   | 4.29E+15 | 1.35  | 1.41    |
| EMPW#28-W   | 16           | 12 | 1.92 | 3(11)      | 1(0.2)     | ٩    | 0.58 | 0.036 | 0.083 | 0.01    | 15(3)      | 4.1(90%)                    | 3.07E+14   | 2.28E+15 | 2.84  | 0.46    |
| EMPW#28-U   | 16           | 12 | 1.92 |            |            | ٩    | 0.58 | 0.036 | 0.083 | 0.01    | 3(3)       | 0.182(99%                   | ) 1.81E+16 | 1.33E+17 | 0.03  | 0.087   |



Figure 2. Ring lattice components.



Figure 3. Beam-transport line.

## Table 4. Principal parameters of the accelerator system.

## Magnet System

|                                   |                 | number of magnet   | ts number of power supplies |
|-----------------------------------|-----------------|--------------------|-----------------------------|
| Bending                           |                 | 28                 | 1                           |
| Quadrupole                        |                 | 74                 | 15                          |
| Sextupole                         |                 | 32                 | 3                           |
| Octupole                          |                 | 4                  | 3                           |
| Vertical steerers                 |                 | 24                 | 24                          |
| Fast vertical steerers for global | orbit FB        | 28                 | 28                          |
| Backleg windings                  |                 |                    |                             |
| on bendings for horizontal        | steerers        | 28                 | 28                          |
| on sectupoles for vertical s      | teeres          | 14                 | 14                          |
| on sextupoles for skew qua        | adrupoles       | 14                 | 14                          |
| on sextupoles for field com       | pensation       | 32                 | 3                           |
| Electronic shunts on quadrupol    | les             |                    |                             |
| for optics matching and tur       | ne compensatio  | on 34              | 48                          |
| RF system                         |                 |                    |                             |
| Number of RF stations             |                 | 4                  |                             |
| Number of klystrons               |                 | 4                  | (180 kW/klystron)           |
| Number of RF cavities             |                 | 4                  | (single cell cavity)        |
| Shunt impedance                   |                 | 27.6 MΩ            | (four cavities)             |
| Unloaded Q                        |                 | 39000              |                             |
| Total power dissipated in cavity  | v wall          | 105 kW             |                             |
| Total cavity gap voltage          |                 | 1.7 MV             |                             |
| Synchrotron frequency             |                 | 23 kHz             |                             |
| Injection system                  |                 |                    |                             |
| Septum magnet                     | Septum 1 (S1    | ) Sentun           | n 2 (S2)                    |
| core material                     | laminated sili  | con steel (nassive |                             |
| length                            | 1500 mm         | 1000 m             | im                          |
| maximum current                   | 6000 A          | 6000 A             |                             |
| deflection angle                  | 7 0°            | 5.0°               |                             |
| pulse width                       | 120 us          | 100 us             |                             |
|                                   | pro             |                    |                             |
| Kicker magnet                     | K1, K2, K3, K   | 4                  |                             |
| core material                     | ferrite (Travel | ing wave type)     |                             |
| core length                       | 345 mm          |                    |                             |
|                                   | 15000 mm        |                    |                             |
| maximum voltage                   | 4.1 V           |                    |                             |
| pulse width                       | 1.7 μs          |                    |                             |





| Vacuum System                 |                                |        |
|-------------------------------|--------------------------------|--------|
| Main Pumping system           | pumping speed                  | number |
| SIP (sputter ion pump)        | 128 l/s                        | 54     |
| DIP (distributed ion pump)    | 150 l/s                        | 26     |
| Ti sublimation                |                                | 71     |
| NEG (non-evaporable getter)   |                                | 2      |
| Total effective pumping speed | 2×10 <sup>4</sup> l/s (for CO) |        |
| Rough pumping system          |                                |        |
| TMP (turbo molecular pump)    | 300 l/s                        | 12     |
| Measurement                   |                                | number |
| B-A gauge                     |                                | 48     |
| mass filter                   |                                | 4      |
| cold cathode gauge            |                                | 24     |
| Sector gate valve             |                                |        |
| all metal with RF shield      |                                | 4      |
| viton seal with RF shield     |                                | 7      |



#### Figure 4.

#### Beam-position monitors.

| 1. Orbiting beam monitors                 |    |  |
|-------------------------------------------|----|--|
| PM (Position Monitor)                     | 65 |  |
| DCCT (Direct Current Current Transformer) | 2  |  |
| RFKO (Radio Frequency Knock-Out system)   | 1  |  |
| WCM (Wall Current Monitor)                | 1  |  |
| LS (Loss monitor)                         | 30 |  |
| Visible Light Monitors                    |    |  |
| CCD TV camera                             | 1  |  |
| Streak camera                             | 2  |  |
| Photon Counting System                    | 1  |  |
|                                           |    |  |

|  | 2. | Photon | beam | position | monitors | installed | in beamlines |  |
|--|----|--------|------|----------|----------|-----------|--------------|--|
|--|----|--------|------|----------|----------|-----------|--------------|--|

| Deemline | Courses | Lingtroom | Dournatroom |                                  |
|----------|---------|-----------|-------------|----------------------------------|
| Dearnine | Source  | Opstream  | Downstream  |                                  |
| BL-3A    | В       | SPM       |             |                                  |
| BL-3C    | В       | SPM       | SPM         |                                  |
| BL-4C    | В       | SPM       | SPM         | Note:                            |
| BL-6B    | В       | SIC       |             |                                  |
| BL-6C    | В       | SIC       |             | B: Bending Magnet                |
| BL-6C    | В       | SPM       | SPM         |                                  |
| BL-7C    | В       | SIC       | SPM         | SPM: Split Photoemission Monitor |
| BL-10B   | В       | SIC       |             | SIC: Split Ion Chamber           |
| BL-12C   | В       | WM        | WM          | WM: Wire Monitor                 |
| BL-21    | В       | WM        |             |                                  |
| BL-27    | В       | SPM       |             |                                  |

| Superconducting vertical wiggler        |                    |                                      |
|-----------------------------------------|--------------------|--------------------------------------|
| Maximum field strength on the beam or   | bit                | 5 Tesla                              |
| Magnet gap                              |                    | 66 mm                                |
| Magnet pole size (width $\times$ hight) |                    | 40 mm × 260 mm                       |
| Number of magnetic poles                |                    | 5 poles (3 poles at nomal operation) |
|                                         |                    | installedat every 200 mm             |
| Rated exciting current                  |                    | 210 A at 4.8 Tesla                   |
| Superconducting wire                    | NbTi:Cu            | 1:1                                  |
|                                         | size               | 1.70 × 0.85mm <sup>2</sup>           |
| Cross section of coils                  |                    | 65 mm × 70 mm                        |
| Number of turn                          |                    | 2520                                 |
| Liquid helium consumption in the perma  | anent current mode | 1.1 L/h                              |
| Damping rate of the permanent current   |                    | 1.4 × 10 <sup>-5</sup> /h            |
| Inductance                              |                    | 1.31 H/coil                          |

| Control System           |        |             |      |             |        |
|--------------------------|--------|-------------|------|-------------|--------|
| Computers                |        |             |      |             |        |
|                          | Server | Workstation | PC   | VME         |        |
| Presentation/Console     | -      | 3           | 17   | _           |        |
| Control/DB Engine        | 1      | 16          | 5    | 6           |        |
| Equipment Control        | -      | -           | 3    | 9           |        |
| Network Management       | -      | 2           | 1    | _           |        |
| Network                  |        |             |      |             |        |
|                          |        | number      | Port | type        | number |
| ATM Switch (155Mbps)     |        | 1           |      | single mode | 12     |
|                          |        |             |      | multi-mode  | 4      |
| ATM-Ethernet Switching H | lub    | 12          | 10BA | SE-T        | 12     |
|                          |        |             |      |             |        |

| _ |          |             |                     |                      |                     |                        |
|---|----------|-------------|---------------------|----------------------|---------------------|------------------------|
|   | Beamline | Source      | σ <sub>x</sub> [mm] | $\sigma'_{x}$ [mrad] | σ <sub>y</sub> [mm] | σ' <sub>y</sub> [mrad] |
|   |          |             |                     |                      |                     |                        |
|   | BL-1     | B01(+2.5)   | 0.203               | 0.245                | 0.061               | 0.0125                 |
|   | BL-2     | U#02        | 0.422               | 0.084                | 0.042               | 0.0084                 |
|   | BL-3 A   | B02(-0.0)   | 0.238               | 0.263                | 0.066               | 0.0125                 |
|   | B/C      | B03(+0.0)   | 0.288               | 0.228                | 0.084               | 0.0066                 |
|   | BL-4     | B04(+2.5)   | 0.319               | 0.161                | 0.066               | 0.0173                 |
|   | BL-6     | B06(+2.5)   | 0.391               | 0.185                | 0.059               | 0.0129                 |
|   | BL-7     | B07(+2.5)   | 0.391               | 0.185                | 0.059               | 0.0129                 |
|   | BL-8     | B08(+2.5)   | 0.391               | 0.185                | 0.059               | 0.0129                 |
|   | BL-9     | B09(+2.5)   | 0.391               | 0.185                | 0.059               | 0.0129                 |
|   | BL-10    | B10(+2.5)   | 0.391               | 0.185                | 0.059               | 0.0129                 |
|   | BL-11    | B11(+2.5)   | 0.391               | 0.185                | 0.059               | 0.0129                 |
|   | BL-12    | B12(+2.5)   | 0.447               | 0.138                | 0.054               | 0.0092                 |
|   | BL-13    | MPW#13      | 0.859               | 0.115                | 0.020               | 0.0186                 |
|   | BL-14    | VW#14       | 0.580               | 0.083                | 0.036               | 0.0098                 |
|   | BL-15    | B15(+2.5)   | 0.203               | 0.245                | 0.061               | 0.0125                 |
|   | BL-16    | MPW#16      | 0.422               | 0.084                | 0.042               | 0.0084                 |
|   | BL-17 A  | B16(-0.0)   | 0.238               | 0.263                | 0.066               | 0.0125                 |
|   | B/C      | B17(+0.0)   | 0.288               | 0.228                | 0.084               | 0.0066                 |
|   | BL-18    | B18(+2.5)   | 0.319               | 0.161                | 0.066               | 0.0173                 |
|   | BL-19    | Revolver#19 | 0.847               | 0.088                | 0.057               | 0.0078                 |
|   | BL-20    | B20(+2.5)   | 0.391               | 0.185                | 0.059               | 0.0129                 |
|   | BL-21    | B21(+2.5)   | 0.391               | 0.185                | 0.059               | 0.0129                 |
|   | BL-27    | B27(+1.2)   | 0.259               | 0.218                | 0.090               | 0.0176                 |
|   | BL-28    | EMPW#28     | 0.580               | 0.083                | 0.036               | 0.0098                 |
|   |          |             |                     |                      |                     |                        |

#### Table 5. Beam parameters at source points.

## Accelerators

| BL    | Affiliation     | Source                   | Spectral Range       | Status       |
|-------|-----------------|--------------------------|----------------------|--------------|
| BL-1  | KEK-PF          | Bending magnet (B1)      | VUV and X-ray        | in operation |
| BL-2  | KEK-PF          | U#02                     | Soft X-ray           | in operation |
| BL-3  | KEK-PF          | Bending magnet (B2&B3)   | VUV and X-ray        | in operation |
| BL-4  | KEK-PF          | Bending magnet (B4)      | X-ray                | in operation |
| BL-5  | KEK-PF          | -                        |                      | in design    |
| BL-6  | KEK-PF          | Bending magnet (B6)      | X-ray                | in operation |
| BL-7  | KEK-PF and RCS  | Bending magnet (B7)      | VUV and X-ray        | in operation |
| BL-8  | Hitachi Ltd.    | Bending magnet (B8)      | VUV and X-ray        | in operation |
| BL-9  | KEK-PF and NEC  | Bending magnet (B9)      | VUV and X-ray        | in operation |
| BL-10 | KEK-PF          | Bending magnet (B10)     | X-ray                | in operation |
| BL-11 | KEK-PF          | Bending magnet (B11)     | VUV and soft X-ray   | in operation |
| BL-12 | KEK-PF          | Bending magnet (B12)     | VUV and X-ray        | in operation |
| BL-13 | KEK-PF          | MPW#13                   | Soft and hard X-ray  | in operation |
| BL-14 | KEK-PF          | VW#14                    | Hard X-ray           | in operation |
| BL-15 | KEK-PF          | Bending magnet (B15)     | X-ray                | in operation |
| BL-16 | KEK-PF          | MPW#16                   | Soft and hard X-ray  | in operation |
| BL-17 | Fujitsu Ltd.    | Bending magnet (B16&B17) | VUV and X-ray        | in operation |
| BL-18 | ISSP and KEK-PF | Bending magnet (B18)     | VUV and X-ray        | in operation |
| BL-19 | ISSP and KEK-PF | Revolver#19              | VUV                  | in operation |
| BL-20 | KEK-PF          | Bending magnet (B20)     | VUV and X-ray        | in operation |
| BL-21 | KEK-PF          | Bending magnet (B21)     | Beam diagnosis       | in operation |
| BL-27 | KEK-PF          | Bending magnet (B27)     | Soft X-ray and X-ray | in operation |
| BL-28 | KEK-PF          | EMPW#28                  | VUV and X-ray        | in operation |

## Table 6. Summary of beamline front ends in FY2000.