Homogeneous Perturbation Between the \(c'_{\Sigma}^{1} \Sigma_{u}^{+}(v' = 0) \) and \(b'_{\Sigma}^{1} \Sigma_{u}^{+}(v' = 1) \) Rotational States of \(N_2 \)

Hidemasa YOSHIDA*, Hajime TOKUNAGA, Tomohiro AOTO, Hiroshi YOSHII1), Tatsuji HAYAISHI1), Yumio MORIOKA

Institute of Physics, Univ. of Tsukuba, Tsukuba city, Ibaraki 305-8573 Japan
1) Institute of Appl Physics, Univ. of Tsukuba, Tsukuba city, Ibaraki 305-8573 Japan

Introduction

Many measurements and accurate theoretical calculations have been reported about the \(c'_{\Sigma}^{1} \Sigma_{u}^{+} \) and \(b'_{\Sigma}^{1} \Sigma_{u}^{+} \) states. Yoshino et al[1] reported homogeneous perturbation between the \(c'_{\Sigma}^{1} \Sigma_{u}^{+}(v' = 0) \) and \(b'_{\Sigma}^{1} \Sigma_{u}^{+}(v' = 1) \) states with absorption spectrum. Their perturbation theoretical calculations agree with experimental data.

In this study rotational resolved emission spectra of the \(c'_{\Sigma}^{1} \Sigma_{u}^{+}(v' = 0) \) and \(b'_{\Sigma}^{1} \Sigma_{u}^{+}(v' = 1) \) states were observed. Lifetime measurements about the rotational levels were performed using single bunch mode.

Experiment

The experiments were performed on beam line 20A. The synchrotron radiation was monochromized by 3-m normal incidence Eagle mounted scanning monochromator with a 2,400 line/mm grating which has resolution \((E/\Delta E)\) of about 60,000 with 10µm exit/entrance slit widths.

We used two detectors on this experiment. One is MCP (Microchannel plate) and the other is PMT (Photomultiplier tube) with MgF₂ window. Since each detector has different wavelength sensitivity, upper level \(\rightarrow \) ground state \(X'_{\Pi} \Sigma_{g}^{+} \) transition is observed by MCP, and upper level : \(a'_{\Pi} \Sigma_{g}^{+} \) transition is observed by PMT.

Results and Discussion

Observed spectra using MCP and PMT are shown in Fig.1(a) and Fig.1(b), respectively. Since the \(c'_{\Sigma}(0) \) and \(b'(1) \) states have the same symmetry, rotational levels which have the same rotational quantum number \(J' \), occur homogeneous perturbation[2]. The influence of the perturbation irregularity is confirmed from interval of rotational lines. In Fig.1(a), the \(b'(1) \) band overlapped the \(c'_{\Sigma}(0) \) band. Since the \(c'_{\Sigma}(0) \) states internuclear distance is near that of the ground state. Therefore, it seems that the \(c'_{\Sigma}(0) \) states have large emission intensity by the Frank-Condon principle. As seen in Fig.1(b) rotational levels which are largely perturbed, have intensities much larger than those of the other rotational levels. It is noted that upper level \(\rightarrow \ a'_{\Pi} \Sigma_{g}^{+} \) transitions are increased by homogeneous perturbation.

Fig.2 represent the lifetimes of rotational lines of the \(c'_{\Sigma}(0) \) and \(b'(1) \) states. Rotational levels of \(c'_{\Sigma}(0) \) have lifetimes 0.59~1.16 nsec and those of \(b'(1) \) have lifetimes 0.71~1.59 nsec.

References

*s013471@ipe.tsukuba.ac.jp