

Homogeneous Perturbation Between the $c' 4^1\Sigma_u^+(v'=0)$ and $b' 1^1\Sigma_u^+(v'=1)$ Rotational States of N_2

Hidemasa YOSHIDA*, Hajime TOKUNAGA, Tomohiro AOTO, Hiroshi YOSHII¹⁾,
Tatsuji HAYAISHI¹⁾, Yumio MORIOKA

Institute of Physics, Univ. of Tsukuba, Tsukuba city, Ibaraki 305-8573 Japan

¹⁾Institute of Appl Physics, Univ. of Tsukuba, Tsukuba city, Ibaraki 305-8573 Japan

Introduction

Many measurements and accurate theoretical calculations have been reported about the $c' 4^1\Sigma_u^+$ and $b' 1^1\Sigma_u^+$ states. Yoshino et al[1] reported homogeneous perturbation between the $c' 4^1\Sigma_u^+(v'=0)$ and $b' 1^1\Sigma_u^+(v'=1)$ states with absorption spectrum. Their perturbation theoretical calculations agree with experimental data.

In this study rotational resolved emission spectra of the $c' 4^1\Sigma_u^+(v'=0)$ and $b' 1^1\Sigma_u^+(v'=1)$ states were observed. Lifetime measurements about the rotational levels were performed using single bunch mode.

Experiment

The experiments were performed on beam line 20A. The synchrotron radiation was monochromized by 3-m normal incidence Eagle mounted scanning monochromator with a 2,400 line/mm grating which has resolution ($E/\Delta E$) of about 60,000 with $10\mu\text{m}$ exit/entrance slit widths.

We used two detectors on this experiment. One is MCP (Microchannel plate) and the other is PMT (Photomultiplier tube) with MgF_2 window. Since each detector has different wavelength sensitivity, upper level \rightarrow ground state $X^1\Sigma_g^+$ transition is observed by MCP, and upper level : $a^1\Pi_g$ transition is observed by PMT.

Results and Discussion

Observed spectra using MCP and PMT show in Fig.1(a) and Fig.1(b), respectively. Since the $c' 4(0)$ and $b' 1(1)$ states have the same symmetry, rotational levels which have the same rotational quantum number J' , occur homogeneous perturbation[2]. The influence of the perturbation irregularity is confirmed from interval of rotational lines. In Fig.1(a), the $b' 1(1)$ band overlapped the $c' 4(0)$ band. Since the $c' 4(0)$ states internuclear distance is near that of the ground state. Therefore, it seems that the $c' 4(0)$ states has large emission intensity by the Frank-Condon principle. As seen in Fig.1(b) rotational levels which are largely perturbed, have intensities much larger than those of other rotational levels. It is noted that upper level \rightarrow $a^1\Pi_g$ transitions are increased by homogeneous perturbation.

Fig.2 represent the lifetimes of rotational lines of the $c' 4(0)$ and $b' 1(1)$ states. Rotational levels of $c' 4(0)$ have

lifetimes 0.59~1.16 nsec and those of $b' 1(1)$ have lifetimes 0.71~1.59 nsec.

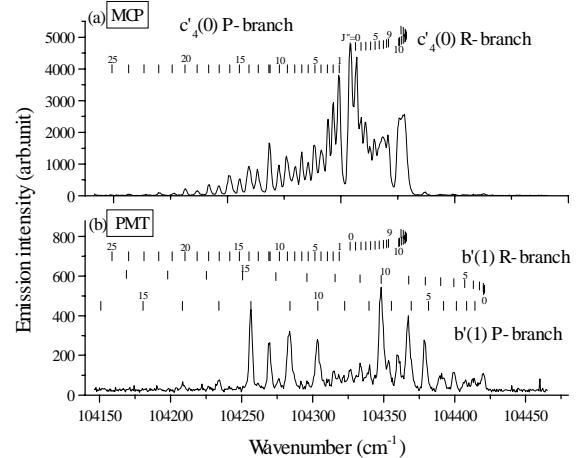


Fig.1 Emission spectra of $N_2 c' 4^1\Sigma_u^+(v'=0)$ and $b' 1^1\Sigma_u^+(v'=1)$

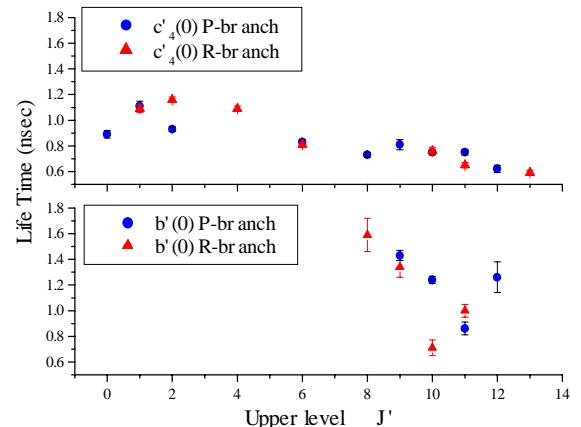


Fig.2 Lifetimes of $c' 4^1\Sigma_u^+(0)$ and $b' 1^1\Sigma_u^+(1)$

References

- [1] K.Yoshino and Y.Tanaka, J.Mol.Spectrosc. 66, 219 (1977)
- [2] G.H.Dieke, Phys.Rev. 47, 870 (1935)