

Investigation of Dynamic Behavior of Catalysts for Hydrotreatment Using Co-Mo Binary Sulfide Cluster

Takeshi KUBOTA, Naoto HOSOMI, Yuya HAMASAKI, Yasuaki OKAMOTO*

Department of Material Science, Shimane-Univ.,

Matsue, Nishikawatsu, Shimane 690-8504, Japan

Introduction

Recently, regulation of sulfur content in gasoline has become severer to reduce particulate materials and SO_x in exhaust. For these reasons, development of new catalysts for ultra-deep-Hydrodesulfurization (HDS) treatment is strongly needed now. Currently, Co-Mo sulfide catalysts are used for HDS treatment. But the reaction mechanism of HDS on the Co-Mo catalysts is not well-known. To clarify the reaction mechanism is necessary to develop new catalysts. It is helpful to investigate HDSe reaction using organo-selen compounds because Se K-edge XAFS can be used for Se-exchanged catalysts. In this study, we studied the local structure of Se on Mo sulfides catalysts after HDSe reaction by means of XAFS.

Experiments

MoS_x/NaY catalysts were prepared by a CVD method using $\text{Mo}(\text{CO})_6$. $\text{MoS}_2/\text{Al}_2\text{O}_3$ catalysts were prepared by impregnation. The sample was sulfided at 673 K. The HDSe reaction of selenophene was performed using a closed circulation system at 623 K. Se and Mo K-edge EXAFS spectra for catalysts after HDSe reaction were measured at BL-10B in a transmission mode. The synchrotron radiation was monochromatized by a Si(311) monochromator.

Results and Discussion

Fig.1 shows XANES spectra for standard compounds of Se and MoS_x/NaY catalysts after HDSe reaction (5 min). It is obvious that the spectrum of MoS_x/NaY is different from that of Se metal or selenophene adsorbed on NaY zeolite, and is similar to that of MoSe_2 . So, it is concluded that Se atoms on the catalysts after HDSe interact with Mo atoms. Fig.2 shows Fourier transform for EXAFS oscillation of Se K-edge EXAFS of Mo sulfide catalysts after HDSe reaction. A sharp peak around 2.3\AA is assigned to Se-Mo bonding. The position of the peak is not shifted by HDSe reaction time. On the other hand, the intensity of the peak is increased with reaction time for MoS_x/NaY catalysts, although the intensity of the peak is invariant with reaction time for $\text{MoS}_2/\text{Al}_2\text{O}_3$ catalysts. Taking into account the formation of highly dispersed Mo sulfide clusters in MoS_x/NaY , these results indicate that Se atoms move from on-top sites to bridged site during HDSe reaction in MoS_x/NaY . In $\text{MoS}_2/\text{Al}_2\text{O}_3$, Se atoms seem to remain around edge sites of MoS_2 .

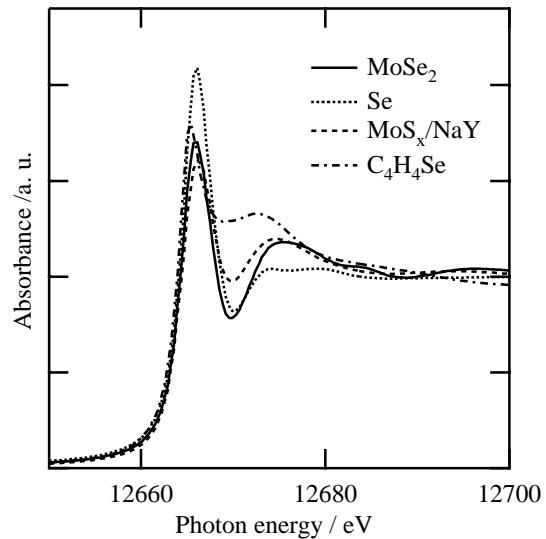


Fig.1 Se K-edge XANES spectra of standard compounds of Se and MoS_x/NaY catalysts after HDSe reaction (5 min).

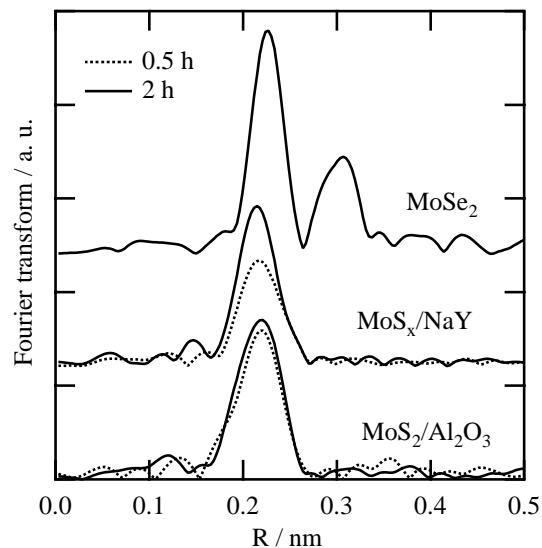


Fig.2 Fourier transform for EXAFS oscillation of Se K-edge EXAFS of Mo sulfide catalysts after HDSe reaction and MoSe_2 .