

In-situ XAFS study of Ag clusters in zeolite 4A

Takafumi MIYANAGA¹*, Yushi SUZUKI¹, Hideki HOSHINO², Naoyuki MATSUMOTO¹,
Takeshi AINAI²

¹ Faculty of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan

² Faculty of Education, Hirosaki University, Hirosaki, Aomori 036-8560, Japan

Introduction

In the fully Ag^+ -exchanged zeolite 4A (Ag-4A) the 12 Ag^+ ions are present inside of the zeolite cages, as needed to balance the anionic charge of the zeolite framework. The white color of the hydrated Ag-4A changes through yellow to brown by heating under vacuum. These changes in color are related to the formation of silver clusters by dehydration [1]. In this report, we study the structural change of Ag-4A by in-situ XAFS measurements.

Experimental

Ag-4A powder samples were prepared by immersing Na-4A ($\text{Na}_{12}[(\text{AlO}_2)_{12}(\text{SiO}_2)_{12}]27.5\text{H}_2\text{O}$) zeolite in an aqueous AgNO_3 solution at 25°C[2,3]. The air-dried Ag-4A was set into the in-situ XAFS measurement cell in which the sample can be heated under vacuum. Ag K -edge EXAFS spectra were measured at BL-10B. A Si(311) channel-cut monochromator was used, and energy and current of the storage ring were 3.0 GeV and 250~300 mA, respectively. The analyses were performed by XANADU code [4] and FEFF6 code [5].

Results and Discussion

Figure 1 shows the change of $k\chi(k)$ EXAFS spectra measured for 2 minutes (2 minutes scan EXAFS) for Ag-4A by keeping the evacuation of the sample at room temperature. After 12 minutes evacuation, any more changes cannot be observed in the spectra.

Fig. 1 The change of $k\chi(k)$ of 2 minutes scan EXAFS for Ag-4A by keeping the evacuation. Time interval for each spectrum is 4 minutes.

The corresponding change of Fourier transforms is shown in Fig. 2. First peak is assigned to short Ag-O distance and second peak to long Ag-O and Ag-Ag [3]. It is observed that the intensity of the second peak increases continuously during the evacuation.

Fig. 2 Fourier transforms of 2 minutes scan EXAFS for Ag-4A shown in Fig. 1.

We have additionally measured 20 minutes scan (not 2 minutes) EXAFS for the sample at 1 atm and for the sample fully evacuated. The structural parameters obtained from these EXAFS are summarized in Table 1. The interatomic distance of the short Ag-O decreases due to the evacuation, which means that the water molecules are removed from the vicinity of Ag ions. The distance of the Ag-Ag decreases and the coordination number (N) increases by evacuation. It is expected that the Ag ions are reduced by the removal of the water molecules. More detailed analyses are now in progress.

Table 1 Structural parameters obtained from 20 minutes scan EXAFS.

	short Ag-O		long Ag-O		Ag-Ag	
	r (Å)	N	r (Å)	N	r (Å)	N
1 atm	2.38	5.7	2.87	2.0	2.88	2.5
Vac.	2.28	3.3	2.86	2.3	2.83	3.7

References

- [1] T.Sun and K.Seff, (1994), *Chem. Rev.* **94**(4), 857-870.
- [2] H.Hoshino, (1996) *Bulletin of the Faculty of Education, Hirosaki University*, **75**, 29-37.
- [3] T.Miyanaga, H.Hoshino and H.Endo (2001), *J. Synchrotron Rad.* **8**, 557-559.
- [4] J.J.Rehr, J.Mustre de Leon, S.I.Zabinsky, and R.C.Albers, (1991) *J. Am. Chem. Soc.* **113**, 5135-5140.
- [5] H.Sakane, T.Miyanaga, I.Watanabe, N.Matsubayashi, S.Ikeda, S. and Y.Yokoyama, (1993), *Jpn. J. Appl. Phys.*, **32**, 4641-4647.

* takaf@cc.hirosaki-u.ac.jp