Generalized-GIXD (Evanescent Scattering) measurements of InAs nano-dots

Masao KIMURA¹, Takeshi Uragami², Tamaki SUZUKI¹, Hiroshi FUJIOKA², and Masaharu OSHIMA²
¹Nippon Steel Co, Futtsu, Chiba 293-8511, Japan
²The Univ. of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan

Introduction

Generalized grazing incidence-angle x-ray diffraction (G-GIXD) or evanescent scattering has been developed to investigate near surface structures of films and dots on Si [1-3]. In this study, this technique has been applied to nano-dots of InAs to investigate change of in-plane structures along the depth-direction.

Experiments

The method was applied to nano-dots of InAs, ~20⁹x30⁶nm³, grown on Si (001) [3]. Evanescent scattering was measured by keeping the angle of incidence (αi) around the critical angle of InAs (αc). Bragg spots were measured systematically by mesh scanning with a scintillation counter (SC) in the Q-space: Q-components parallel (Qx,y) and perpendicular (Qz) to the surface, where outline of the profile was also measured by an image plate. Two sets of slits, which limit the height and the width of the beam path, are positioned in front of SC. Resolution function was changed by altering the heights (hslit), the width (wslit), and the distance of two slits (dslit). The typical values are: hslit = 1-2 mm, wslit = 310 mm; the resolution are ΔQx,y = 1-2x10⁻² and ΔQz = 2-4x10⁻² [r.u.]. Typical time for measuring intensities by SC was about 1-10 sec. Experiments have been carried out at BL-3A.

Results

Fig.1 shows the αi dependence of 220 (in-plane) scattering profiles of InAs which corresponds to the Qx,y cross-section of Q(k) at Qz = 0.0. It is clearly observed that the peak maximum shifts towards at a larger Qx,y side as increase of αi, showing the existence of the gradient of the strain field. The scattering intensities are maximum at the condition αi = αc, and their change is consistent with the calculated one. This indicated that the measured intensities come from the evanescent scattering and are not caused by bulk scattering at the side sections of dots.

The strain field in the Qx,y direction is calculated from measured intensities. Fig.2 shows the penetration depth: l₁/e dependence of the strain of InAs nano-dots. The strain εx,y = -0.5 % and that the strain is relaxed near the top.

The intensities of evanescent wave decays as a function of exp(-z/l₁/e) (z: depth). The deconvolution of measured strain which was averaged over the depth, can be performed using FEM technique based on the results for different αi [4].

References


* kimura@re.nsc.co.jp