

Resonant X-ray Raman scattering spectra of Sm-compounds

Masashi ODAKA^{1*}, Tatsuya IWASAKI¹, Kouichi OKAWA¹, Akihiro KIKUCHI¹, Yuji TAKADA¹, Kouichi MEGURO¹, Tadahiro YOSHIDA¹, Takayuki KASHIWAKURA¹, Shun-ichi NAKAI¹, Toshiaki IWAZUMI²

¹Department of Electrical and Electronic Engineering, Utsunomiya University, Utsunomiya 321-8585, Japan

²IMSS, Photon Factory, KEK, Tsukuba 305-0801, Japan

Resonant X-ray emission spectroscopy (RXES) provide more important information than X-ray absorption spectra (XAS) or X-ray emission spectra (XES) about the intermediate and final states of 4f rare-earth compounds. In this study, we observed the RXES spectra of Sm compounds, SmB₆ and Sm₃Ce₄, which are considered to be mixed valence states by hopping of f electron between 2⁺ and 3⁺. We measured RXES of Sm₃Se₄ by using the crystal monochromator "ESCARGET" at the beam line BL-7C of Photon Factory, KEK, Tsukuba.

Figure 1 (a) shows the Sm L_{III} XAS of Sm₃Se₄. The RXES were taken at selected excitation energies showed by vertical arrows for 1 to 17 in (a) are represented in Fig.1 (b). The intensity of each spectrum is normalized with an incident photon flux. The emitted photon energies (ω_s) were studied across the Sm L_{III} absorption threshold as a function of the transfer energy ($\omega_i - \omega_s$). In this representation, the resonant Raman peak B₁ and B₂ are fixed for various values of ω_i and its intensities go through resonant maximum at the absorption shoulder (Spectrum No.7) and absorption peak (Spectrum No.11). Across the absorption peak, normal L _{α} emission peak appears and shift linearly with incident photon energies. The intensity of these peaks is almost constant in this energy region. A structure A is so weak that we can't observe it in Fig.1 (b).

Fig. 1 (a) Sm L_{III} XAS of Sm₃Se₄, (b) SmL _{α} RXES for Sm₃Se₄ excited with different photon energies, as indicated by arrows in (a). The vertical line and the dashed line are used for a guide to the eye. The line B₁ and B₂ shows the peak position of Raman spectra where stays a constant energy transfer ($\omega_i - \omega_s$). The line C shows the peak position of normal L _{α} emission spectra where shifts continuously with incident photon energy (ω_i).

*mt003209@cc.utsunomiya-u.ac.jp