

Resonant Photoemission Spectroscopy of $\text{RFe}_4\text{P}_{12}$ (R= La, Ce, Pr)

Hiroyoshi ISHII*, Tsuneaki MIYAHARA, Yasuhiro TAKAYAMA, Kenji OBU, Motoki SHINODA, Chol LEE, Hidetsugu SHIOZAWA, Tatsuma D. MATSUDA,

Hitoshi SUGAWARA and Hideyuki SATO

Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan

Introduction

Ternary intermetallic compounds $\text{RFe}_4\text{P}_{12}$ (R= rare earth element) with the filled skutterudite structure exhibit various interesting properties. According to the measurements on a high quality single crystal [1], $\text{CeFe}_4\text{P}_{12}$ shows the complex temperature dependence of resistivity unexpected for a simple single-gap semiconductor; $\text{PrFe}_4\text{P}_{12}$ exhibits the Kondo-like anomalies in the transport properties. We investigated the electronic states of $\text{RFe}_4\text{P}_{12}$ (R= La, Ce, Pr) by the high-resolution resonant photoemission spectroscopy. In this paper, we report the Pr 4f spectra of $\text{PrFe}_4\text{P}_{12}$.

Experimental

The photoemission experiments were performed using synchrotron radiation at the beam line BL-11D of the Photon Factory, High Energy Accelerator Research Organization (KEK). The instrumental resolution was about 65 meV. The samples were cooled to 20 K.

Results and Discussion

Figures 1 shows the resonant photoemission spectra of $\text{PrFe}_4\text{P}_{12}$ and the Pr 4f spectrum obtained by subtracting the resonance minimum spectrum ($h\nu = 115$ eV) from the resonance maximum spectrum ($h\nu = 124$ eV). In the 115 eV and 124 eV spectra, the intense band located at the binding energy of ~ 0.7 eV is mainly due to the Fe 3d band. In the 4f spectrum, the peaks located at ~ 4.6 eV and ~ 0.5 eV correspond to the f^1 and f^2 peaks, respectively. Furthermore, a weak additional structure was observed at 2.6 eV and the f^2 peak shows the complicated multiplet

Figure 1: Resonant photoemission spectra of $\text{PrFe}_4\text{P}_{12}$. The solid line and vertical bars indicate the Pr 4f spectrum and the calculated multiplet components, respectively.

structure. To assign these structures, we calculated the multiplet structure of the $4f^2$ configuration using Cowan's code [2]. The Vertical bars in Fig. 1 indicate the calculated multiplet components.

For Pr compounds, data for the high-resolution photoemission spectrum are sparse. We have measured the 4f spectra of PrSn_3 with a high Kondo temperature (T_K) and a weakly hybridization system PrAl_2 as the reference samples. Figure 2 shows the Pr 4f photoemission spectra in the vicinity of the Fermi energy. As can be seen from Fig. 2, the intensity of the f^2 peak for $\text{PrFe}_4\text{P}_{12}$ is stronger than those for the reference systems. This indicates the strong hybridization between the Pr 4f and the valence band states.

In all the spectra, the structures due to the 3H_4 state were observed at ~ 0.06 eV. For $\text{PrFe}_4\text{P}_{12}$ and PrAl_2 , the 3H_4 peaks were observed as a shoulder. On the other hand, the spectrum of PrSn_3 with a high- T_K exhibits the 3H_4 peak as the peak structure. According to the experimental and theoretical results of the Ce 4f spectrum of a Kondo system [3], the spectral shape of the $f_{5/2}^1$ peak ascribed to the tail of the Kondo resonance peak varies from a shoulder to a prominent peak with increasing T_K . The shoulder structure for $\text{PrFe}_4\text{P}_{12}$ is similar to the feature observed in the very low- T_K Ce system. Thus, we infer that $\text{PrFe}_4\text{P}_{12}$ is not a high- T_K system.

References

- [1] H. Sato *et al.*, Phys. Rev. B **62** (2000) 15125.
- [2] R. Cowan, *The Theory of Atomic Structure and Spectra* (University of California Press, verkeley, 1981)
- [3] F. Patthey *et al.*, Phys. Rev. B **42** (1990) 8864.

Figure 2: Pr 4f photoemission spectra of $\text{PrFe}_4\text{P}_{12}$, PrSn_3 and PrAl_2 .

* ishii@comp.metro-u.ac.jp