

Analysis of Crystal System of BaBiO_3 by Synchrotron X-ray Diffraction and Convergent-beam Electron Diffraction

Takuya HASHIMOTO*

Department of Applied Physics, CHS, Nihon Univ., Setagaya-ku, Tokyo 305-0801, Japan

Introduction

Semiconducting property of BaBiO_3 is attributed to charge density wave (CDW) gap originating from ordering arrangement of “ Bi^{3+} ” and “ Bi^{5+} ” in the distorted-perovskite structure [1]. It has been reported that the collapse the CDW gap by modulation of crystal structure with cation substitution generate the electron carrier and superconducting transition in $\text{BaPb}_{1-x}\text{Bi}_x\text{O}_3$ and $\text{Ba}_{1-x}\text{K}_x\text{BiO}_3$ [2, 3].

So far, crystal system of BaBiO_3 has been reported to be monoclinic-distorted perovskite [4]. However, there has no decisive study on crystal structure of BaBiO_3 since so far reported studies has been based on diffraction measurements assuming the space group. In this study, crystal system of BaBiO_3 has been determined by using synchrotron x-ray diffraction. The obtained result has been confirmed by convergent-beam electron diffraction (CBED) [5].

Experimental

Ceramic BaBiO_3 specimen was prepared from the mixture of nominal amount of BaCO_3 and Bi_2O_3 . The powdery mixture was calcined at $720\text{ }^\circ\text{C}$ for 12 h in air and pressed into pellet followed by sintering at $800\text{ }^\circ\text{C}$ for 16 h under O_2 atmosphere. X-ray diffraction measurement revealed that the sample was the single phase distorted-perovskite. Cation and oxide ion content were confirmed by inductively-coupled plasma emission analysis (ICP) and iodometry, respectively.

Synchrotron x-ray diffraction measurements were performed by using BL-4B2 beam line at Photon Factory, KEK. Wavelength of x-ray was measured to be 1.5384 \AA from Si 422 peak. Diffraction signals in 2θ range of $75\text{--}77^\circ$ and $89.5\text{--}91.0^\circ$ were employed for determination of crystal system of BaBiO_3 . CBED measurements on the same specimen were performed by using JEOL-JEM2010.

Results and discussion

If the often reported monoclinic symmetry of BaBiO_3 [4] with $a=6.186\text{ \AA}$, $b=6.140\text{ \AA}$, $c=8.670\text{ \AA}$ and $\beta=90.17^\circ$ is applicable, two x-ray diffraction peaks indexed as 440 and 008 should be observed in 2θ range of $89.5\text{--}91.0^\circ$. Fig. 1(a) shows x-ray diffraction peaks of BaBiO_3 observed in this work. Observed two peaks apparently suggested the monoclinic symmetry of BaBiO_3 . However, full width at half maximum (FWHM) of the peak indexed by open circle was larger than those of the other peaks in $75\text{--}77^\circ$ and $89.5\text{--}91.0^\circ$. This suggested that the apparent single diffraction peak represented by open circle was

composed of overlapping two peaks, indicating the triclinic symmetry in BaBiO_3 .

Fig. 1(b) shows curve fitting result of diffraction peak represented by open circle in Fig. 1(a), assuming triclinic symmetry in BaBiO_3 . It was indicated that the apparent broad single peak in Fig. 1(a) was composed of overlapping $\bar{4}40$ and 440 peaks of triclinic BaBiO_3 . The lattice constants of BaBiO_3 calculated from the observed peaks were $a=6.188\text{ \AA}$, $b=6.139\text{ \AA}$, $c=8.671\text{ \AA}$, $\alpha=89.99^\circ$, $\beta=90.14^\circ$ and $\gamma=90.02^\circ$, which were so close to monoclinic ones that the triclinic symmetry was not distinguished in the preceding studies.

Triclinic symmetry of BaBiO_3 was also supported by CBED. Neither CBED pattern which showed symmetry of 2 nor m was obtained, indicating that the crystal system was not monoclinic but triclinic[5].

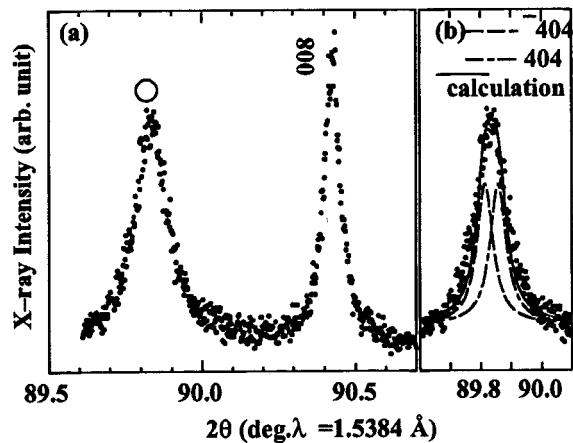


Fig. 1(a) X-ray diffraction peaks of BaBiO_3 obtained by using synchrotron light source. The FWHM of the peak represented by open circle is larger than that of the peak assigned to 008. (b) Curve fitting of the peak indexed by open circle in Fig. 1(a) assuming triclinic symmetry. Dashed curve: $\bar{4}40$ peak. Chain curve: 440 peak. Solid curve: calculation. Dot : observed data.

References

- [1] D. E. Cox and A. W. Sleight, Solid State Commun., 19, 969 (1976).
- [2] A. W. Sleight et al., Solid State Commun., 17, 27 (1975).
- [3] L. F. Mattheiss, Phys. Rev. B., 37, 3745 (1988).
- [4] for example, M. Oda et al., Solid State Commun., 55, 423 (1985).
- [5] T. Hashimoto et al., Phys. Rev. B submitted.

* takuya@chs.nihon-u.ac.jp