

EXAFS STUDY ON THE TRACE YTTERBIUM INCORPORATED IN CALCIUM CARBONATE CRYSTALS

Hiroshi TSUNO^{1), 2), 4)}, Hiroyuki KAGI^{2)*}, Yoshio TAKAHASHI³⁾,
Tasuku AKAGI⁴⁾ and Masaharu NOMURA⁵⁾

- 1) Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8569, Japan
- 2) Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- 3) Faculty of Science, Hiroshima University, Hiroshima 739-8526, Japan
- 4) Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
- 5) Photon Factory, Institute of Materials Structure Science, KEK, Ibaraki 305-0801, Japan

Introduction

The detailed chemical mechanism of dissolution and crystallization of calcium carbonate (CaCO_3) is one of the crucial issues in understanding the global cycling of CO_2 on the earth surface. Recently, substantial increase in the solubility of CaCO_3 was observed by the addition of trace amount of lanthanum (La) into the aqueous system [1]. The presence of La in the starting solution ($\approx 5 \mu\text{mol kg}^{-1}$) stabilized the labile phase of CaCO_3 , vaterite, in the aquatic solution [2]. The local structure of trace lanthanum in CaCO_3 will be important to understand the chemical mechanism of the phenomena. It is difficult to obtain La-L_{III} XAFS spectra in a fluorescence mode due to the interference from the strong fluorescence of calcium as a matrix of samples. We attempted to measure and analyze XAFS spectra of trace amounts of ytterbium (Yb) which can be separated from Ca fluorescence using a solid-state detector (SSD). During the previous beam time of KEK-PF, we could carry out the estimation of the detection limits of Yb-L_{III} XAFS measurement in a fluorescence mode [3]. In the present work, we have investigated the local structure around Yb in CaCO_3 by the EXAFS technique.

Experimental

Calcium carbonate was precipitated from a mixed solution of 30 mM CaCl_2 aq and 30 mM NaHCO_3 aq with a given amount of ytterbium chloride. Concentrations of Yb were 5 μM in the starting solutions and 1.2×10^{-3} as Yb/Ca molar ratio in the precipitated calcium carbonate, respectively. Standard materials are listed in Table 1.

The Yb-L_{III} XAFS spectra were recorded in the fluorescence mode at the BL12C of KEK-PF [4] under the atmosphere and at room temperature. The fluorescent X-ray was measured by a 19 element pure-Ge SSD [5]. Some paper or/and aluminum foil were put on the front of detector as filter for decrease of the intensity of Ca-fluorescence. Analysis of the EXAFS spectra was performed with a PC program, REX2000 (Rigaku Co.).

Results and Discussion

XANES spectra suggested that Yb is incorporated in CaCO_3 as a substance different from Yb_2O_3 , $\text{Yb}(\text{OH})_3 \cdot n(\text{H}_2\text{O})$ or $\text{Yb}_2(\text{CO}_3)_3 \cdot n(\text{H}_2\text{O})$.

Fig. 1 shows Fourier transform of $k^3\chi$ of Yb-doped CaCO_3 . A peak at 2 (no phase-shift correction) is attributed to the nearest Yb-O interaction. Fig. 2 shows the back Fourier transform of the first peak at 2 (see Fig.1) and its fitting result. The analysis results of the first shell of Yb in the various materials are shown in Table 1. The coordination number of Yb in CaCO_3 is extremely small ($N \approx 4$) in contrast to the case for the standard materials. Furthermore, the Yb-O distance is approximately 4% shorter than those of other compounds. These data suggest that Yb-O bonding is compressed in the host CaCO_3 structure.

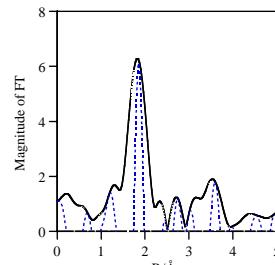


Fig. 1 Fourier transform of k^3 -weighted Yb L_{III} EXAFS of Yb in CaCO_3 . Solid line: Radial structure function; Dashed line: imaginary part of FT.

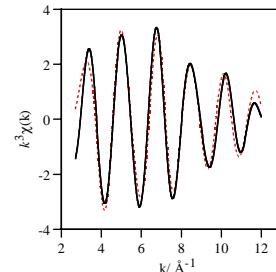


Fig. 2 Fit to the back Fourier transform of the first peak of Yb L_{III} FT-EXAFS in CaCO_3 shown in Fig. 1 (Yb-O). Solid line: experimental; Dashed line: fitting.

Table 1: Results of the EXAFS analysis for Yb in CaCO_3 and various ytterbium compounds (the first nearest Yb-O shell).

Samples	$R_{\text{Yb-O}}$	Coordination numbers
Yb in CaCO_3	2.25	4.1
$\text{NaYb}(\text{CO}_3)_2 \cdot n(\text{H}_2\text{O})$	2.33	5.8
$\text{Yb}_2(\text{CO}_3)_3 \cdot n(\text{H}_2\text{O})$	2.33	5.6
$\text{Yb}(\text{OH})_3 \cdot n(\text{H}_2\text{O})$	2.27	5.1
Yb in $\text{NaHCO}_3\text{-NaCl}$ solution	2.33	7.8

References

- [1]Akagi, T. and Kono, Y., *Aquat. Geochem.*, 1, 231 (1995)
- [2]Tsuno, H. *et al.*, *Bull. Chem. Soc. Jap.*, 74, 479 (2001)
- [3]Kagi, H. *et al.*, KEK Activity Report, 17, 153 (2000)
- [4]Nomura, M. and Koyama, A., KEK Report, 95-15, 1 (1996)
- [5]Nomura, M., KEK Report, 98-4, 1 (1998)

*kagi@eqchem.s.u-tokyo.ac.jp