

## EXAFS measurements for liquid Ge-Si alloys II

Masanori INUI<sup>1</sup>, Tetsuya MATSUSAKA<sup>2</sup>, Daisuke ISHIKAWA<sup>2</sup>,  
Xinguo HONG<sup>1</sup>, Moynul Huq KAZI<sup>2</sup> and Kozaburo TAMURA<sup>1</sup>

<sup>1</sup> Faculty of Integrated Arts and Sciences, Hiroshima University,  
Higashi-Hiroshima 739-8521, Japan

<sup>2</sup> Graduate School of Biosphere Science, Hiroshima University,  
Higashi-Hiroshima 739-8521, Japan

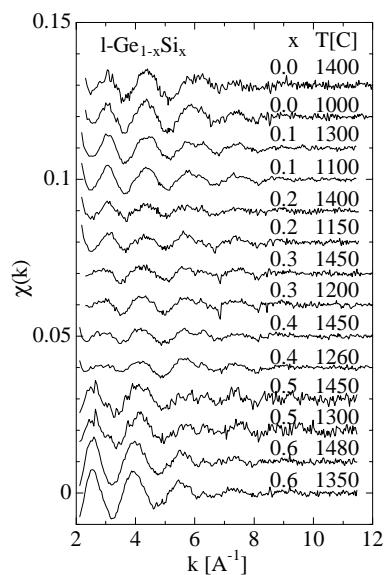
### Introduction

Ge and Si are typical semiconductors with a diamond structure in the solid states. Ge-Si alloys form solid solutions in the entire concentration region and the lattice parameter is known to change according to Vegard's law[1]. EXAFS spectra of crystalline Ge-Si alloys were measured around the Ge-K absorption edge to investigate the bond-length relaxation in the solid solution [2,3]. The results by Kajiyama et al [2] show that Si and Ge atoms are randomly distributed and that Ge-Ge and Ge-Si bond lengths scarcely depend on the composition.

Mousseau and Thorpe [4] discussed the EXAFS results [2] based on a topological rigidity model. In the model, when the network of the bonds is floppy, each bond keeps its own natural length. D. B. Aldrich et al [3] confirmed the slight composition dependence of Ge-Ge and Ge-Si bonds expected by the topological rigidity model. Recently Si and Ge K-edge XAFS spectra of the crystalline alloys were observed by J. C. Aubry et al [5] and they reported more reliable composition dependence of Ge-Ge, Ge-Si and Si-Si bond lengths.

When these elements are melted, their dc conductivities increase up to  $10^4$  ( $\Omega\text{cm}$ ) $^{-1}$  and they become liquid metals. It is interesting to study the local structure by means of EXAFS spectroscopy. EXAFS results of Ge fine droplets in carbon powder up to 1340°C are reported by Filippioni and Di Cicco [6], and we have carried out EXAFS measurements for bulky liquid (l-) Ge with the thickness of 40  $\mu\text{m}$  up to 1400 °C (97G010). However EXAFS measurement for l-Ge-Si alloys has not been reported to date. It prompts us to measure EXAFS spectra of the liquid alloys. In this article the results of EXAFS measurements for l-Ge-Si alloys are presented. The brief results were already published in the literature [7].

### Experimental


EXAFS measurements were carried out by transmission method using the spectrometer installed at BL10B, using a newly developed sample cell made of polycrystalline sapphire (97G010). Ge-Si alloys (99.999%) from  $\text{Ge}_{0.1}\text{Si}_{0.9}$  to  $\text{Ge}_{0.5}\text{Si}_{0.5}$  were prepared by Rare Metallic Co. Ltd. EXAFS spectra were obtained above the melting temperatures to 1450°C and those of the crystalline powder were measured at room temperature as references.

### Results and discussion

Figure 1 shows EXAFS functions,  $\chi(k)$ , of l- $\text{Ge}_{1-x}\text{Si}_x$  ( $x=0, 0.1, 0.2, 0.3, 0.4, 0.5$  and  $0.6$ ) near the melting temperatures and at higher ones. Clear oscillations in  $\chi(k)$  are observed. With increasing Si concentration up to  $\text{Ge}_{0.6}\text{Si}_{0.4}$ , the amplitude of the oscillation near  $3\text{\AA}^{-1}$  becomes small and the amplitude becomes again large at  $\text{Ge}_{0.5}\text{Si}_{0.5}$  and  $\text{Ge}_{0.4}\text{Si}_{0.6}$ . Clear concentration dependence of the amplitude suggests that neighboring atoms around a central Ge atom change with the composition. The results of Gaussian fitting have already been reported in the literature [7]. Further analysis is now in progress.

### References

- [1] M. Hansen, Constitution of Binary Alloys, 774 (McGRAW-HILL, 1958).
- [2] H. Kajiyama, et al, Phys. Rev. B **45** 14005 (1992).
- [3] D. B. Aldrich, et al, Phys. Rev. B **50**, 15026 (1994).
- [4] N. Mousseau and M.F. Thorpe, Phys. Rev. B **48**, 5172 (1993).
- [5] J. C. Aubry et al, Phys. Rev. B **59**, 12872 (1999).
- [6] A. Filippioni and A. Di Cicco, Phys. Rev. B **51**, 12322 (1995).
- [7] M. Inui et al, J. Synchrotron Rad. **8**, 767 (2001).

