

Local structure of molten polyvalent metal chlorides

Yoshihiro OKAMOTO^{1*}, Mitsuo AKABORI¹, Haruhiko MOTOHASHI², Katsumi KOBAYASHI³,
Noriko USAMI³

¹Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan

²SPring-8 Service, Kouto, Mikazuki-cho, Hyogo, 678-1205, Japan

³KEK-PF, Tsukuba, Ibaraki 305-0801, Japan

Introduction

We have studied local structure of molten salt systems by high temperature XAFS technique[1]. It has been reported that many polyvalent metal halides have stable coordination like $(MX_n)^{m-}$ (M =metal and X = halogen) in molten state. We describe the XAFS results of some molten polyvalent chlorides.

Experimental

The XAFS measurements of molten YCl_3 (Y K-dege) at 1173K and molten 12% $ZrCl_4$ (Zr K-dege) in LiCl-KCl eutectic at 723K were performed at BL27B station in the KEK-PF. The samples were sealed off in the quartz cell under reduced pressure($<10^{-5}$ Torr).

Results and discussions

(1) Molten YCl_3 systems

The $|FT|$ functions for the molten YCl_3 and mixtures with LiCl-KCl are shown in Fig.1. It has been reported[2] that YCl_3 has a 6-fold $(YCl_6)^{3-}$ coordinate in molten state. The 1st Y^{3+} - Cl^- peak in the $|FT|$ increases

by adding LiCl-KCl. It can be simply assigned to decreasing in the Debye-Waller factor, not to increasing in the coordination number, because the peak position does not change by the mixing. The 2nd peak was found around 3.7 Å only in the pure YCl_3 . This is due to edge-sharing link(Y^{3+} - Cl^- - Y^{3+}) of the coordinates. On the other hand, no significant peak was found over the 1st peak in the mixtures. Thus, the link is broken by adding Cl^- donor(LiCl-KCl). It can be expected that the coordinate is stabilized and move freely in the mixture melt.

(2) Molten 12% $ZrCl_4$ in LiCl-KCl eutectic

The $|FT|$ functions for the 12% $ZrCl_4$ system is shown in Fig.2, together with that of solid $ZrCl_4$. The 1st peak in the melt is larger than that of the solid $ZrCl_4$. It is assigned to three distinct 1st Zr^{4+} - Cl^- distances(2.307, 2.498 and 2.655 Å) in the solid $ZrCl_4$ [3] and single distance 2.51 Å in the melt. The latter is close to sum of ionic radii $r\{Zr^{4+}$ (VI) $\}=0.72$ Å and $r(Cl^-)=1.81$ Å. Coordination number from the fitting was also 5.9 ± 0.6 . It suggests that the melt has a 6-fold $(ZrCl_6)^{2-}$ coordinate.

References

- [1] Y.Okamoto et al., To be submitted.
- [2] J.C.Wasse and P.S.Salmon, J.Phys., Condens. Matter, 11,1381(1999)
- [3]B.Krebs, Z.Anorg.Allg.Chem., 378,263(1970).

* okamoto@molten.tokai.jaeri.go.jp

Fig.1 Fourier transform magnitude $|FT|$ of k^3 -weighed XAFS function for molten YCl_3 at 1173K and mixtures with LiCl-KCl eutectic at 973K

Fig.2 Fourier transform magnitude $|FT|$ for molten 12% $ZrCl_4$ in LiCl-KCl eutectic