

Threshold excitation of V K β

Jun KAWAI^{*1}, Shingo HARADA¹, Ippei KISHIDA¹, Toshiaki IWAZUMI², Rintaro KATANO³,
Yasuhiro ISOZUMI⁴, Hironobu SHOJI⁵, Susumu NANAO⁵

¹Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan

²KEK-PF, Tsukuba, Ibaraki 305-0801, Japan

³Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan

⁴Radioisotope Research Center, Kyoto University, Kyoto 606-8501, Japan

⁵Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan

Introduction

K β spectra of 3+, 4+, and 5+ vanadium compounds are measured at K edge threshold (5465 eV) excitation. Raman shift and narrowing of the fluorescent line are observed. Though the normal X-ray fluorescence spectra have a broad line width due to the life time effect, the threshold excitation spectra reveal fine structures due to the narrow width of the spectra.

Experimental

Samples measured were vanadium (III) acetylacetone ($\text{CH}_3\text{COCHCOCH}_3\text{}_3\text{V}$), vanadyl (IV) acetylacetone ($\text{CH}_3\text{COCHCOCH}_3\text{}_2\text{VO}$), and vanadium (V) oxide V_2O_5 . These three chemicals were in powder form. The nominal electron configuration of these compounds were d^2 (III), d^1 (IV), and d^0 (V).

Spectra were measured using “Escargot” spectrometer on the beamline BL-7C. The analyzing crystal was curved InSb(333) crystal and the detector was a position sensitive proportional counter. Time required to obtain one spectrum was about one hour and two or three iterations of measurements were performed to check the reproducibility.

Results

Chemical shift of the K $\beta_{1,3}$ peak is shown in Fig. 1. Resonant Raman scattering spectra and X-ray fluorescence spectra of vanadyl (IV) acetylacetone are shown in Fig. 2, where 5630, 5550, 5500 eV (solid lines), 5470, and 5465 eV excitation spectra are plotted. Narrowing of 5470 eV excitation spectrum and the Raman shift of 5465 eV spectrum are found. The Raman spectra of vanadium (III) acetylacetone were split into two peaks as is shown in Fig. 3. Detailed discussion has been published in Ref.[1].

Reference

[1] J. Kawai et al., Adv. X-Ray Chem. Anal. Japan, 32, 125 (2001).

* jkawai@process.mtl.kyoto-u.ac.jp

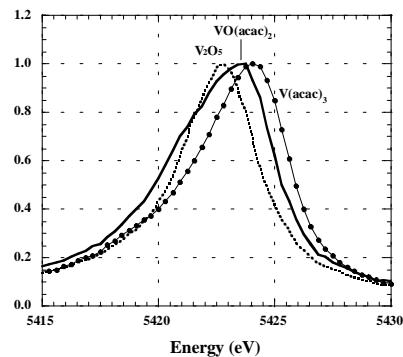


Fig.1 Chemical shift of three vanadium compounds.

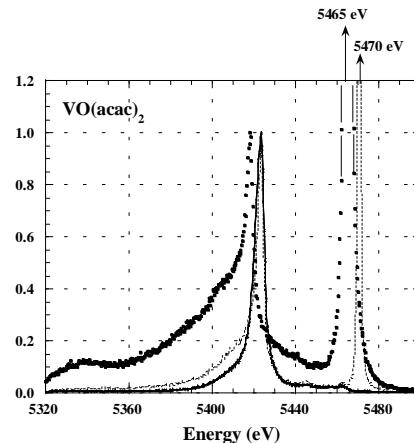


Fig.2 Resonant X-ray Raman spectrum of vanadyl (IV) acetylacetone.

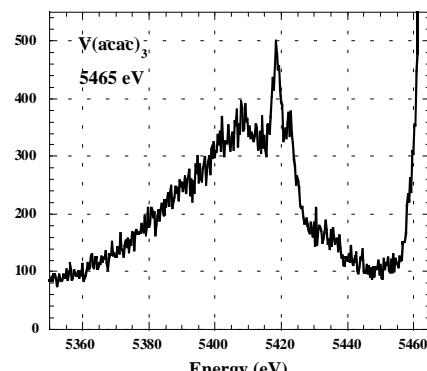


Fig.3 Resonant X-ray Raman spectrum of vanadium (III) acetylacetone at 5465 eV excitation.