ORDER-DISORDER TRANSITION OF POLYISOPRENE-b-POLYISOPRENE DIBLOCK COPOLYMER SOLUTIONS

Mikihito TAKENAKA, Masaaki MIYAZAWA, Tatuya MIYAJIMA, Hirokazu TANAKA, and Takeji HASHIMOTO

Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, JAPAN

Order-disorder transition in a polystyrene-block-polyisoprene diblock copolymer (PS-PI, the number averaged molecular weight \(M_n = 45,000 \), heterogeneity index \(M_w/M_n = 1.09 \)) solutions under high pressure were investigated by using small-angle X-ray scattering. We used dioctyl Phthalate (DOP) as solvent. Figure 1 shows the change in the scattered intensity of the PS-PI/DOP with temperature at pressure \(P = 30 \text{MPa} \). It was found that the scattered intensity decreases with temperature \(T \). In particular, the drastic increase between \(T = 90.0 \) and \(93.0 \degree C \) was found, indicating that the order-disorder transition temperature (ODTT) is \(91.5 \degree C \). The ODTT increases with pressure. These facts suggested that the increase in the pressure enhanced the fluctuations and makes the diblock copolymer solutions more unstable. It is well-known that the thermal fluctuation effects causes changes in the nature of phase transition of a symmetric block copolymer from the second-order to the first order transition. We checked whether the strength of this effects is affected by pressure. This effects suppresses the scattered intensity of the peak position. In order to check how this suppression changes with pressure, we plotted the inverse of the peak intensity \(1/S(q_m) \) as a function of the inverse of temperature in Figure 2. Though the ODTT at each pressure is different, each curve is well superimposed, indicating that the pressure affects both ODTT the temperature range where the thermal fluctuation suppresses the concentration fluctuations of the block copolymer solutions.

![Fig.1 Temperature Dependence of scattered intensity for S-I/DOP at 30.0 MPa.](image1)

![Fig.2 S(q_m)^{-1} vs. T^{-1}](image2)