

EXAFS study of liquid Se-Te mixture

Takafumi MIYANAGA¹, Hideoki HOSHINO², Hiroyuki IKEMOTO³, Hirohisa ENDO⁴

¹ Faculty of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan

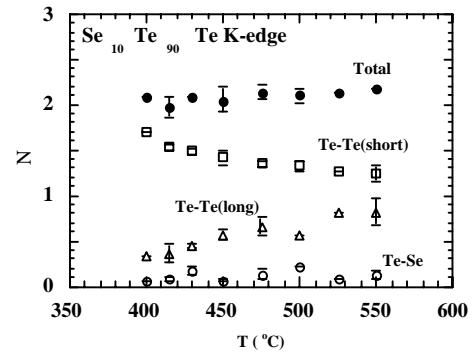
² Faculty of Education, Hirosaki University, Hirosaki, Aomori 036-8560, Japan

³ Faculty of Science, Toyama University, Toyama 930-8555, Japan

⁴ Faculty of Engineering, Fukui Institute of Technology, Fukui 910-8505, Japan

Introduction

Liquid (l-) Se-Te mixtures have attracted considerable interest because they have covalently bonded chain structure and undergo the semiconductor to metal (S-M) transition at high temperature. Previous EXAFS studies on l-Se-Te mixtures have been carried out by Tamura *et al*[1]. However, their study at 2.5 GeV operation in PF was not sufficient enough in S/N ratio. In the present study we have measured EXAFS spectra at 3.0 GeV operation in which the S/N ratio is much better than those at 2.5 GeV operation. In this paper the changes of the local structure for l-Se-Te mixtures near the S-M transition are reported. Our discussions focus on the temperature variation of the coordination numbers around Te atoms.


Experimental

The mixtures were prepared by weighing 99.999% pure Se and Te in silica glass ampoules sealed under vacuum. More detailed procedure of sample preparation is described elsewhere[2]. X-ray absorption spectra of Te *K*-edge (31.8 keV) were obtained at BL 10B. An electron beam energy is 3.0 GeV and a stored ring current is 200 mA. Si(311) channel-cut crystal monochromator was used. X-ray absorption spectra were recorded in transmission mode. The samples were put in a quartz cell with appropriate length. The EXAFS interference function was extracted from the absorption spectra and was Fourier transformed by the program of XANADU code described elsewhere[3]. In order to obtain the structural parameters, the EXAFS function was fitted by non-linear least-squares method to the theoretical function, in which theoretical parameters were calculated by FEFF 6 code[4].

Results and Discussion

The previous EXAFS analysis suggests that the short chains in l-Te with metallic nature are composed of the same number of short (~2.80 Å) and long (~2.95 Å) covalent bonds and that the long bonds vanish in the semiconducting state at low temperature[5]. Figure 1 shows temperature variation of the coordination numbers around Te atoms for l-Se₁₀Te₉₀. Open circles indicate the coordination number of Se around Te atoms (N_{Te-Se}), open squares Te around Te at ~2.77 Å ($N_{Te-Te(short)}$) and open triangles at ~2.95 Å ($N_{Te-Te(long)}$) and closed circles total coordination number (N_{tot}).

coordination number (N_{tot}). The values of N_{tot} are about 2.1 and nearly independent of temperature, suggesting that the l-Se₁₀Te₉₀ mixture is composed of the chain structure with covalent bonding. The values of N_{Te-Se} are almost constant. With increasing temperature the value of $N_{Te-Te(short)}$ decreases from 1.7 at 400°C to 1.3 at 550°C and $N_{Te-Te(long)}$ increases from 0.3 at 400°C to 0.8 at 550°C, which indicates that the l-Se₁₀Te₉₀ mixture becomes metallic at higher temperatures. It is found that the contribution due to the long Te-Te bond in the l-Se₁₀Te₉₀ is larger than that in the l-Se₂₀Te₈₀[6].

Fig. 1. Temperature variation of the coordination number around Te atoms for l-Se₁₀Te₉₀. Open circles indicate the coordination number of Se around Te atoms (N_{Te-Se}), open squares Te around Te at ~2.77 Å ($N_{Te-Te(short)}$) and open triangles at ~2.95 Å ($N_{Te-Te(long)}$) and closed circles total coordination number (N_{tot}).

References

- [1] K.Tamura, M.Inui, M.Yao, H.Endo, S.Hosokawa, H.Hoshino, Y.Katayama and K.Maruyama, *J. Phys.: Condens. Matter* **3**, (1991) 7495.
- [2] H.Endo, H.Hoshino, H.Ikemoto and T.Miyanaga, *J. Phys.: Condensed Matter* **12** (2000) 6077.
- [3] H.Sakane, T.Miyanaga, I.Watanabe, N.Matsubayashi, S.Ikeda and Y.Yokoyama: *Jpn. J. Appl. Phys.* **32** (1993) 4641.
- [4] J.J.Rehr, J.Mustre de Leon, S.I.Zabinsky and R.C.Albers: *Phys. Rev. B* **44** (1991) 5135.
- [5] Y.Kawakita, M.Yao and H.Endo, *J. Non-Cryst. Solids*, **250-252** (1999) 447.
- [6] T.Miyanaga, H.Hoshino, H.Ikemoto, H.Endo, Photon Factory Activity Report, #17 (2000) 121.

* takaf@cc.hirosaki-u.ac.jp