

Characterization of the local layer structure in the ferroelectric liquid crystal with cholesteric-chiral smectic C phase transition sequences

Kazuhiro TAKADA¹, Takashi NOMA¹, Taihei MUKAIDE¹, Takeshi TOGANO¹ and Atsuo IIDA²

¹Canon Research Center, Atsugi, Kanagawa 243-0193, Japan

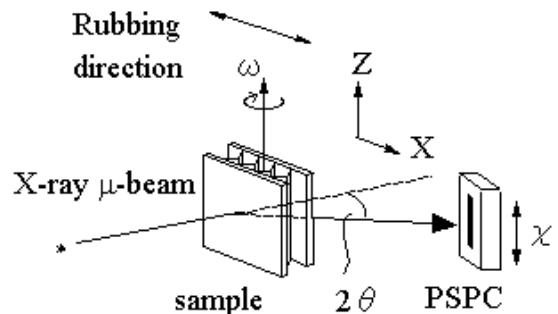
²KEK-PF, Tsukuba, Ibaraki 305-0801, Japan

Introduction

The surface-stabilized ferroelectric liquid crystal (SSFLC) cells have been studied for optical device applications. The layer structure in the SSFLC cells has been interpreted as a chevron structure. In this study, we investigated the local layer structure in another type of FLC cells using a synchrotron x-ray microbeam.

The FLC has cholesteric-chiral smectic C (Ch-SmC*) phase transition sequences. The main difference from materials conventionally used for a SSFLC cell was the exclusion of the SmA phase. The FLC cells show the monostable switching characteristics. Cooling these cells from isotropic phase to the SmC* phase, two smectic layer normal directions are generated. The layer normal can be controlled by applying low DC voltage only near the phase transition temperature from Ch to SmC* [1].

Experimental


The sample was the FLC sandwiched between two ITO-coated glass plates (80 μ m thick). Both of the inner surfaces of the glass plates were coated with an alignment film and rubbed in antiparallel directions. The cell thickness was about 1.5 μ m controlled by the glass spacer beads.

The x-ray micro diffraction measurements were performed at the photon factory on BL4A. The x-ray microbeam system was used [2]. The beam size was about 7 \times 7 μ m² at the sample position. The angular divergence was about 1mrad in both horizontal and vertical directions. The x-ray energy was 8keV. The experimental arrangement around the sample is shown in Fig.1. A position sensitive proportional counter (PSPC) was used to detect diffracted x-rays. The PSPC was placed at 2 θ position corresponding smectic layer spacing. The diffracted position on the PSPC corresponds to the χ -rotation angle of the smectic layer around the surface normal from the rubbing direction (χ profile). The sample cell was mounted on a ω -rotation stage with a vertical rotation axis to obtain rocking curves (ω profile) [3].

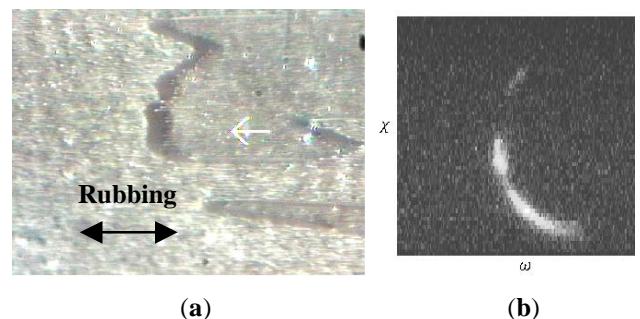

Results and Discussion

Figure 2(a) shows a typical optical micrograph of the sample cell. A stripe texture running almost parallel to the rubbing direction was observed. The arrow indicates the analysis point. The χ - ω profile in Fig.2(b) shows the

deformed layer structure in the FLC. The smectic layer bends in both ω and χ -directions.

Fig.1 Experimental setup around the sample. The sample in the figure was assumed the chevron structure.

Fig.2 (a) The optical micrograph of the FLC. (b) The χ - ω profile. The arrow in Fig.2(a) shows the point of measurement.

The diffraction intensity distributions in the χ - ω profile suggests the layer structures of this sample mainly asymmetric chevron structures, which includes of a small amount of inclined-bookshelf structures. We consider that these layer structures generate the stripe texture. Detailed analysis is now underway.

References

- [1] Y.Asao et al., Jpn.J.Appl.Phys. 38,(1999)5977.
- [2] A.Iida, T.Noma, Nucl.Instrum.Methods B82(1993)129.
- [3] A.Iida et al., Jpn.J.Appl.Phys. 40(2001)1345.