

DYNAMIC OBSERVATION OF SECONDARY RECRYSTALLIZATION IN CROSS-ROLLED SILICON STEEL BY SYNCHROTRON X-RAY TOPOGRAPHY

Yoshiyuki Ushigami^{1*}, Shuich Nakamura¹, Noriaki Ota², Tamaki Suzuki³ and Masao Kimura³

¹Steel Research Laboratories, Nippon Steel Corporation, 20-1 Shintomi, Futtsu, Chiba 293-8511

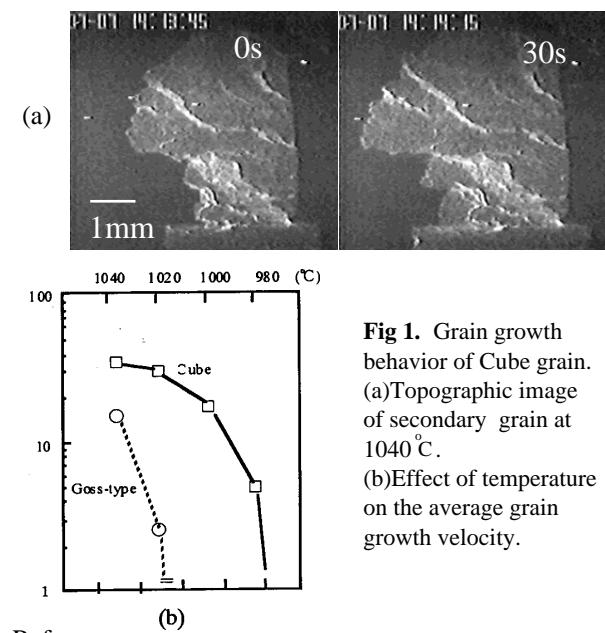
²Nippon Steel Technoresearch Corporation, 20-1 Shintomi, Futtsu, Chiba 293-0011

³Advanced Technology Research Laboratories, Nippon Steel Corporation, 20-1 Shintomi, Futtsu, Chiba 293-8511

Introduction

Dynamics of secondary recrystallization of cross-rolled silicon steel, in which Cube({100}<001>) and Goss-type({110}<110>) textures evolve, was investigated by *in situ* observation utilizing synchrotron x-ray topography. Grain growth behavior is strongly affected by grain boundary characteristics and temperature; Cube grain starts to migrate at lower temperature than Goss-type grain. The analysis of primary texture shows that Cube grains and Goss-type grains have a high frequency of $\Sigma 7$ and $\Sigma 9$ boundaries to the matrix, respectively. The mechanism can be explained by the assumption that secondary grains grow selectively due to the higher frequency of coincidence boundaries and $\Sigma 7$ boundary is mobile in the lower temperature range compared with $\Sigma 9$ boundary.

Experimental Procedure


Primary recrystallized specimens were annealed in the temperature gradient to evolve some secondary grains in the higher temperature region and then they were quenched. Among the secondary grains, Cube and Goss-type grains were selected and grain growth behavior of these secondary grains was observed *in situ* by the dynamic x-ray topography system [1].

Results and Discussions

Fig.1(a) shows the grain growth behavior of Cube secondary grain at 1040°C. Though the migration of secondary grain is locally neither uniform nor stationary due to the retarding force by subboundaries in the secondary grain, it principally depends on its orientation and temperature. Fig.1(b) shows the temperature dependence of grain growth velocities. It can be seen that the secondary recrystallization temperature, i.e. the onset temperature of grain growth, is different between the two grains. Cube grain starts to grow at 980°C and Goss-type grain at 1020°C. The relative migration ratio of Cube grain to Goss-type grain, which is a parameter representing selective growth, takes large values in the temperature range from 980°C to 1020°C and decreases as annealing temperature increases. This feature implies that the secondary recrystallization temperature is the crucial parameter of selective growth. It was reported that selective growth of secondary grains depends on the grain boundary characteristics between the secondary grain and

primary recrystallized matrix and coincidence boundaries take an important role [2-4] and that special characteristics of coincidence boundaries exist in a finite temperature interval and the transition temperature from a special boundary to a non-special boundary depends on the type of coincidence boundary [5].

Our result can be explained by the assumption that $\Sigma 7$ boundaries should be mobile in the lower temperature region in comparison with $\Sigma 9$ boundaries. These results coincide with the report on the transition temperatures of coincidence boundaries[5].

Fig 1. Grain growth behavior of Cube grain.
(a)Topographic image of secondary grain at 1040°C.
(b)Effect of temperature on the average grain growth velocity.

References

- [1]Y.Ushigami, Y.Suga, N.Takahashi, K.Kawasaki, Y.Chikaura and H.Kii, J. Mater. Eng. 13 (1991) 113
- [2]J.Harase, R.Shimizu and T.Watanabe, Proc.7th RISO Int. Symp. on Met. Mater. Sci. (1986) 343
- [3]Y.Ushigami, T.Nakayama, Y.Suga and N.Takahashi, Mater. Sci. Forum 157-162 (1994) 1081
- [4]Y.Ushigami, T.Kubota and N.Takahashi, Tex. and Microstr., 32 (1999) 137
- [5]L.S.Shvindlerman and B.B.Straumal, Acta Met. 33 (1985) 1735