

New vacancy generation mechanism in ultrahigh-purity aluminum single crystals with a low dislocation density

Kaoru MIZUNO¹⁾, Ichiro SHIRAIKI¹⁾, Satoshi YAMAMOTO¹⁾,
Masanori KUGA²⁾, Hiroyuki OKAMOTO³⁾ and Eiji HASHIMOTO⁴⁾

¹⁾Department of Material Science, Interdisciplinary Faculty of Science and Engineering,
Shimane University, Matsue, 690-8504, Japan

²⁾Department of Physics, Faculty of Science, Kanazawa University, Kanazawa, 920-1192, Japan

³⁾Department of Health Science, School of Medicine, Kanazawa University, Kanazawa, 920-0942, Japan

⁴⁾Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, 730-8511, Japan

Introduction

It is well known that insufficient vacancies from the thermal equilibrium are emitted by pre-existent dislocation lines in usual metal crystals. We have reported that interstitial type dislocation loops are formed as a source for insufficient vacancies in high-purity aluminum single crystals with a low dislocation density and the loops nucleate at an impurity or their cluster with heterogeneously.¹⁾ However, it is not clear that the predominant vacancy source in the ultrahigh-purity aluminum crystal in which there are few impurities acting as nucleus of the loops. In ultrahigh-purity aluminum crystal with dislocations of low density, what is the predominant source for insufficient vacancies is interested.

Experimental

The specimen used in this study was a single crystal of ultrahigh-purity aluminum (99.9999 at %) with low dislocation density.²⁾ The specimen was firstly heated to 300°C, kept at this temperature for 20 min., and then slowly cooled to RT. The heating and cooling rates are 1000 °C /h and 20 °C /h, respectively. During the heat treatment, about 20 topographs were taken with white beam synchrotron radiation.

Results and discussion

Figure 1(a) and (b) are topographs taken at RT (before heating) and 300°C, respectively. In Fig.1(b), many thick straight lines formed at 300°C after the temperature rise are observed instead of the interstitial dislocation loops in high-purity specimen. Figure 2 shows the magnified straight-line image. This topograph shows that the line is a row of dislocation loops aligned in the <110> direction. And these rows of dislocation loops were

disappeared during the slow cooling. It is confirmed that the thermal generation process of vacancy in nearly perfect crystal with ultrahigh-pure aluminum consists of following two steps. A few interstitial loops as like as high-purity specimen are formed, and then these grow to rows of dislocation loops emitting vacancies into lattice by the formation mechanism proposed by Amelinckx *et al.*³⁾

References

- 1) T.Kino *et al.*: J. Phys. Soc. Jpn. **53** (1984) 3290.
- 2) E. Hashimoto and Y. Ueda: Mater. Trans. JIM **35** (1994) 262.
- 3) S.Amelinckx and W. Bontinck: Acta. Metall. **5**(1957)345.

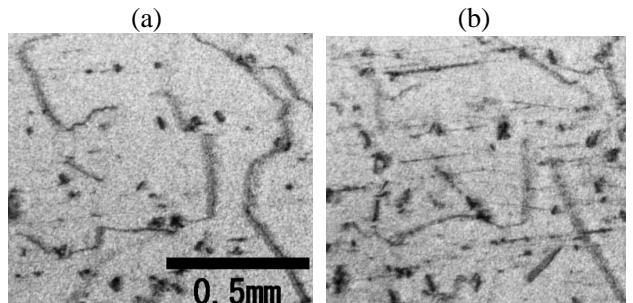


Fig.1 Topographs taken at RT (a) and 300°C(b).

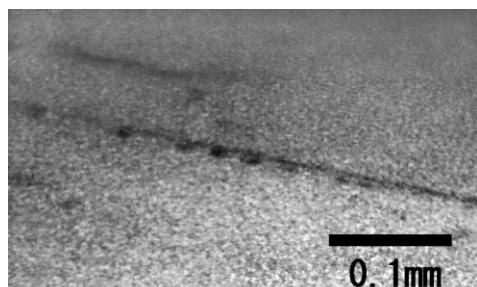


Fig.2 Magnified straight-line image in Fig. 1(b).