

Structural analysis of magnetically ordered $\text{NaV}_6\text{O}_{11}$

Yasushi KANKE^{1*}, Takuji IKEDA¹, Hironori NAKAO², Youichi MURAKAMI², and Fujio IZUMI¹

¹Advanced Materials Laboratory, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

²KEK-PF, Oho, Tsukuba, Ibaraki 305-0801, Japan

Introduction

$\text{NaV}_6\text{O}_{11}$ is interesting from viewpoints of $S=1$ *kagomé* lattice and magnetic metal character. Its magnetic susceptibility (χ) obeys Curie-Weiss law above T_t (=242.7 K), but shows a spin gap between 80.1 K (= T_C) and T_t . Below T_C , it shows uniaxial magnetic anisotropy with an easy axis of magnetization parallel to [001] direction [1].

$\text{NaV}_6\text{O}_{11}$ shows two-step structural phase transitions on cooling: $P6_3/mmc$ – $P6_3mc$ – $Cmc2_1$, with transition temperatures at T_t and 80.1 K (= T_{h-o}), respectively [2-4]. Crystal structures of the former two have been determined, however, structural study of the $Cmc2_1$ form is limited to qualitative so far.

In this study, the $P6_3mc$ – $Cmc2_1$ transition was investigated by X-ray powder diffraction study at BL-1B coupled with Rietveld analysis.

Experimental

Diffraction data ($\lambda=1.0028 \text{ \AA}$) were obtained at BL-1B with exposure time of 4 min. and ω -oscillation of ± 10 deg. The data were analyzed by RIETAN-2000 [5].

Results and discussion

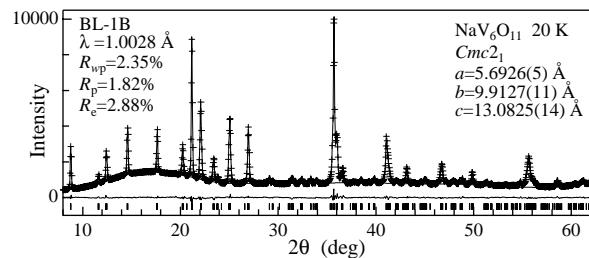


Fig. 1. Diffraction profile of $\text{NaV}_6\text{O}_{11}$ at 20 K.

The Rietveld analyses (Fig. 1) were carried out for the data at 20–60 K and 80–120 K with intervals of 10 K.

The $P6_3/mmc$ form consists of three types of V atoms. The $\text{V}(1)\text{O}_6$ octahedra form a regular *kagomé* lattice perpendicular to [001] by edge-sharing. The $\text{V}(2)\text{O}_6$ octahedra form a face-sharing dimer parallel to [001]. The $\text{V}(3)\text{O}_5$ is a coordination trigonal-bipyramidal. Here we focus on the V(1) and V(2) atoms.

In the $P6_3mc$ form, the V(1) regular *kagomé* lattice distorts to form a $\text{V}(1)_3$ trimer. The V(2) atoms branch into two types, so the $\text{V}(2)_2$ dimer changes to a $\text{V}(21)$ – $\text{V}(22)$ pair. In the $Cmc2_1$ form, the V(1) atoms branch into two types, V(1a) and V(1b). The $\text{V}(1)_3$ trimer distorts from regular triangle to the V(1a)V(1b)₂ isosceles triangle. Remaining V atoms show no branching.

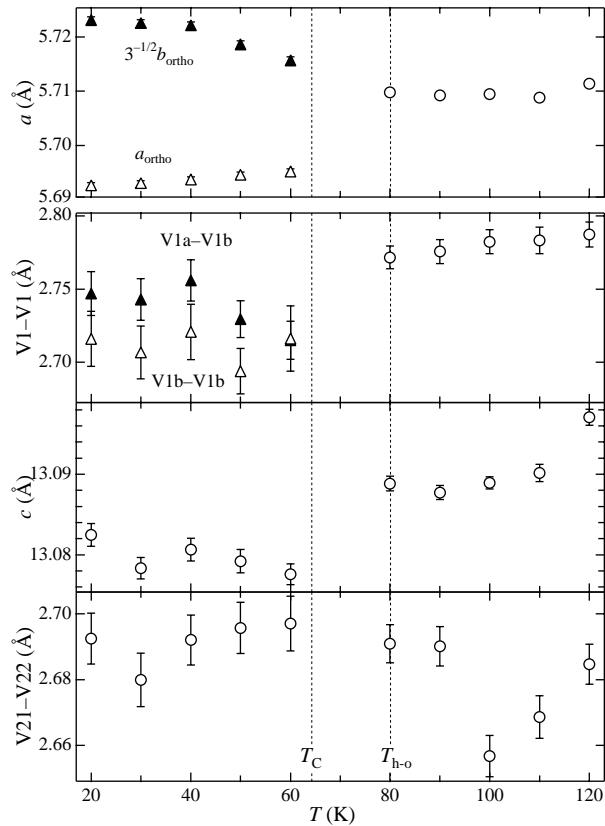


Fig. 2. Lattice parameters and V-V distances.

The V(1)-V(1) distance decreases gradually on cooling in the $P6_3mc$ form, but decreases abruptly on the $P6_3mc$ – $Cmc2_1$ transition (Fig. 2). The V(1a)V(1b)₂ triangle shows a pair of longer V(1a)–V(1b) and a shorter V(1b)–V(1b). The former increases gradually while the latter remains almost unchanged on cooling. The V(21)–V(22) does not show any detectable change on the $P6_3mc$ – $Cmc2_1$ transition.

References

- [1] Y. Uchida et al., J. Phys. Soc. Jpn. 60, 2530 (1991).
- [2] Y. Kanke et al., J. Solid State Chem. 112, 429 (1994).
- [3] Y. Kanke et al., J. Appl. Crystallogr. 28, 599 (1995).
- [4] A. Akiba et al., J. Phys. Soc. Jpn. 67, 1303 (1998).
- [5] F. Izumi et al., Mater. Sci. Forum 198, 321 (2000).

*KANKE.Yasushi@nims.go.jp