

## High-pressure phase I of sulfur

Keiji KUSABA<sup>\*1</sup>, Takumi KIKEGAWA<sup>2</sup>

<sup>1</sup>IMR, Tohoku Univ., Sendai 980-8577, Japan

<sup>2</sup>KEK-PF, Tsukuba, Ibaraki 305-0801, Japan

### Introduction

We reported three high-pressure phases (HPPs) of sulfur in our previous study [1]. Their stable pressure ranges were 3-8GPa, 8-15GPa and higher than 15GPa, respectively. All HPPs were formed at high-temperature condition and were unquenchable at ambient condition. The HPP II was found to have a hexagonal cell containing 18 atoms and to be built up of  $S_6$  molecules. However, the unit cells of the HPPI and HPPIII have not been determined yet.

The aim of the present study is to determine the unit cell of the HPPI under high-pressure condition using synchrotron X-ray source.

### Experiment

*In-situ* X-ray observation of sulfur was carried out by the energy-dispersive type X-ray powder diffraction method with the MAX80 system at PF-AR-NE5C. The details of the *in-situ* observations under high-pressure and high-temperature were described in our report [1].

The compression behavior of the low-pressure phase (LPP) of sulfur was observed under hydrostatic condition at room temperature. For the hydrostatic experiment, powdered sulfur and NaCl as a pressure marker were encased in a teflon capsule with a mixture of methanol and ethanol (4:1). The teflon capsule was put in a pressure medium.

### Result and discussion

Figure 1 shows typical X-ray diffraction patterns of the HPPI at 4.17GPa and 27°C with several 2θ angles. An automatic indexing computer code, 'DICVOL' shows a possible hexagonal unit cell ( $a = 6.976 \pm 0.001 \text{ \AA}$  and  $c = 4.291 \pm 0.002 \text{ \AA}$ ) from 24 diffraction lines. The unit cell volume of the HPPI is calculated to be  $180.86 \pm 0.007 \text{ \AA}^3$ .

The HPPI is expected to have 9 atoms of sulfur in the unit cell from an assumption; the volume per atom of the HPPI is smaller than that of the LPP and larger than that of the HPPII at 4.17GPa and 27°C, as shown in Fig. 2.

The determined unit cell of the HPPI shows that the crystal structure is related to those of hexagonal selenium and tellurium [2]. The cell parameters of selenium (space group;  $P3_121$ ) are  $a_{Se} = 4.35517 \text{ \AA}$ ,  $c_{Se} = 4.94945 \text{ \AA}$  and  $Z_{Se} = 3$  at 0.1MPa and 20°C. Selenium atoms form endless zigzag chains along the  $c$ -axis in the hexagonal cell. The cell parameters of the HPPI may be described as  $a = \sqrt{3} * a_{Se}$ ,  $c = c_{Se}$  and  $Z = 3 * Z_{Se}$ , by taking a difference of atomic radius and a compression effect. The fact shows that the high-pressure behavior of sulfur is related to those of selenium and tellurium.

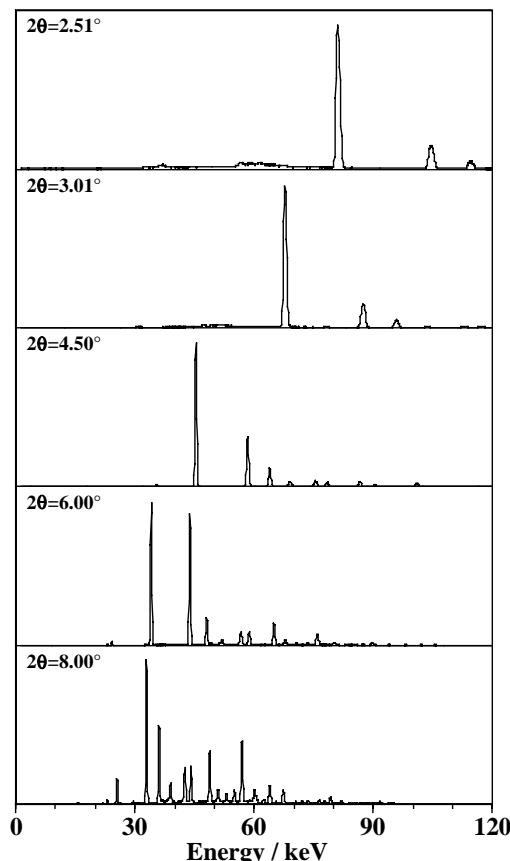



Fig. 1 X-ray diffraction patterns of the HPPI of sulfur with MgO at 4.17 GPa and 27 °C

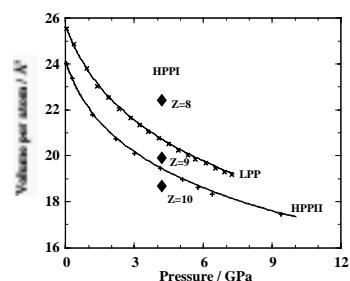



Fig. 2 Compression behaviors of the LPP and HPPII at room temperature. Solid circle marks show calculated atomic volume of the HPPI.

### Reference

[1] K. Kusaba *et al.*, PF Act. Rep., vol. 17B, 228 (2000).  
 [2] W. G. Wyckoff, *Crystal Structures*, vol.1, p.36 (1982).