

Pressure-Induced Phase Transition of $\text{Na}_{0.99}\text{V}_2\text{O}_5$ at Low Temperature

Yuya KATSUKI, Yasuhiko FUJII*, Naohisa TAKESUE, Masahiko ISOBE, Yutaka UEDA, Kenji OHWADA¹, Hironori NAKAO², Yusuke WAKABAYASHI³, Youichi MURAKAMI⁴,

Kazuki ITOH⁵, Yoshiyuki AMEMIYA⁶, Hiroshi FUJIHISA⁷, Katsutoshi AOKI⁷

Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan

¹Kansai Research Establishment, JAERI, Sayo, Hyogo 679-5148, Japan

²KEK-PF, Tsukuba, Ibaraki 305-0801, Japan,

³Faculty of Science, Chiba University, Chiba, Chiba 263-8522, Japan

⁴Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

⁵Institute of Applied Biochemistry, The University of Tukuba, Tukuba, Ibaraki 305-3587, Japan

⁶Department of Applied Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan

⁷National Institute of Materials and Chemical Research, Tukuba, Ibaraki 305-8565, Japan

Since 1996 the inorganic compound NaV_2O_5 has drawn much attention because of its spin-Peierls-like behavior[1]. It has an orthorhombic structure with lattice constants $a=11.325\text{\AA}$, $b=3.611\text{\AA}$, $c=4.806\text{\AA}$. In the ab -plane VO_5 -pyramids form two-dimensional networks sharing its corners or edges. Such network layers are stacked along the c direction with Na atoms intercalated.

Recently it is well understood that NaV_2O_5 undergoes an order-disorder phase transition associated with charge on V ions cooperatively coupled with spin-gap formation, and lattice dimerization ($2a \times 2b \times 4c$) at $T_c=35\text{K}$ under ambient pressure[2, 3].

Very recently Ohwada et al.[4] carried out x-ray scattering experiments and reported that at high pressures and low temperatures NaV_2O_5 shows a large variety of phases, all of which have $2a \times 2b \times zc$ type modulated structure. Thus obtained P - T phase diagram resembles the "devil's staircase" or "devil's flower" theoretically obtained ANNNI model.

In this paper to investigate the charge imbalance effect on V we report the detailed SR x-ray study of $\text{Na}_{0.99}\text{V}_2\text{O}_5$ at high pressures ($P < 1.5\text{GPa}$) and low temperatures ($T < 30\text{K}$), which is deficient in an electron donor Na by 1%.

The x-ray scattering experiments were carried out both at BL-1B (Micro Powder Diffractometer) and BL-4C (four-circle diffractometer). Wavelength was tuned to 0.69\AA with a Si(111) monochromator. A diamond anvil cell (DAC) which was mounted on a closed-cycle helium refrigerator with a 4:1 mixture of methanol/ethanol as pressure media was used. Pressure and temperature were monitored from the lattice constant of NaCl and with a Au-0.07%Fe chromel thermocouple, respectively. We used high-quality $\text{Na}_{0.99}\text{V}_2\text{O}_5$ single crystals which were grown by a flux method with a typical size of $100\mu\text{m} \times 500\mu\text{m} \times 50\mu\text{m}$.

We found a systematic appearance of the $2a \times 2b \times zc$ ($z=1, 4, 5, \frac{21}{4}, 6, 8$) type phases similar to the case of pure system NaV_2O_5 . Figure 1 shows the pressure-temperature phase diagram of $\text{Na}_{0.99}\text{V}_2\text{O}_5$. In Fig. 1 the open circles indicate the points where phase transitions were monitored.

The areas named P and $C_{\frac{1}{z}}$ show normal phase which is observed up to room temperature at ambient pressure and commensurate phases with the modulation wave vector $q=(\frac{1}{2}, \frac{1}{2}, \frac{1}{z})$, respectively. The shaded area shows more complicated higher-order commensurate or incommensurate phase. The broken lines indicate the outline of phase diagram of pure system.

The P - T phase diagram of $\text{Na}_{0.99}\text{V}_2\text{O}_5$ can be reproduced by shifting that of NaV_2O_5 by -5K along T and -0.1GPa along P . Such a remarkable effect may give a clue for a microscopic mechanism of competitive interactions in this system leading to the "devil's staircase" type behavior.

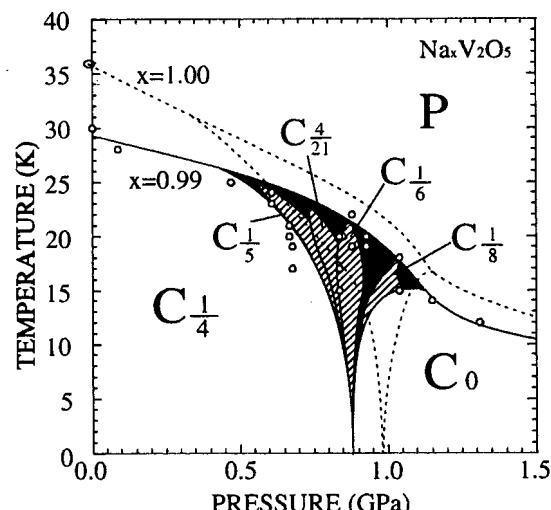


Fig. 1: P - T phase diagram of $\text{Na}_{0.99}\text{V}_2\text{O}_5$

References

- [1] M. Isobe and Y. Ueda J. Phys. Soc. of Jpn. **65**, 1178 (1996).
- [2] Y. Fujii et al. J. Phys. Soc. of Jpn. **66**, 326 (1997).
- [3] N. Nakao et al. Phys. Rev. Lett. **85**, 4349 (2000)
- [4] K. Ohwada et al. to be published in Phys. Rev. Lett.