

## X-RAY CRYSTALLOGRAPHIC STUDIES OF CATECHOL 2,3-DIOXYGENASE, METAPYROCATECHASE

Akiko Kita<sup>1</sup>, Yuki Maegawa<sup>1</sup>, Shin-ichi Kita<sup>2</sup>, Koji Inaka<sup>2</sup>, Tetsuo Ishida<sup>3</sup>, Hiroyuki Tanaka<sup>3</sup>,  
Kihachiro Horike<sup>3</sup>, Mitsuhiro Nozaki<sup>3</sup> and Kunio Miki<sup>1,4</sup>

<sup>1</sup>Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan,

<sup>2</sup> Research Laboratory of Resources Utilization, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, <sup>3</sup> Department of Biochemistry, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan, <sup>4</sup> RIKEN Harima Institute/Spring-8, Koto 1-1-1, Mikazukicho, Sayo-gun, Hyogo 679-5148, Japan

Catechol dioxygenases catalyze the ring cleavage of catechol and its derivatives in either an intradiol or extradiol manner. These enzymes have a key role in the degradation of aromatic molecules in environment by soil bacteria. Catechol 2,3-dioxygenase catalyzes the incorporation of dioxygen into catechol and the extradiol ring cleavage to form 2-hydroxymuconate semialdehyde.

Catechol 2,3-dioxygenase (metapyrocatechase, MPC) from *Pseudomonas putida* mt-2 was the first extradiol dioxygenase to be obtained in a pure form and has been studied extensively. The initial crystals of MPC were obtained from sodium citrate solutions by the vapour-diffusion method. After the stepwise macroseeding, best crystals those were suitable for diffraction works were obtained [1]. The three-dimensional structure of MPC has been determined at 2.8 Å resolution by the multiple isomorphous replacement method. The diffraction data were collected with a screenless Weissenberg camera at BL-6A beamline. The enzyme is a homotetramer with each subunit folded into two similar domains. The structure of the MPC subunit resembles that of 2,3-dihydroxybiphenyl dioxygenase, although there is low amino acid sequence identity between these enzymes. The active-site structure reveals a distorted tetrahedral Fe(II)

site with three endogenous ligands (His 153, His 214 and Glu 265), and an additional molecule that is most probably acetone [2].

To elucidate the ring-cleavage reaction mechanism, we planned the structure analysis of MPC complexed with *o*-nitrophenol, that is the inhibitor of MPC. The crystals were prepared by soaking to 0.5 or 0.1 mM *o*-nitrophenol solutions. X-ray diffraction data were collected up to 3.2 Å resolution. The large electron density was appeared near the Fe(II) atom and it is assumed to be the molecule of *o*-nitrophenol (Fig. 1).

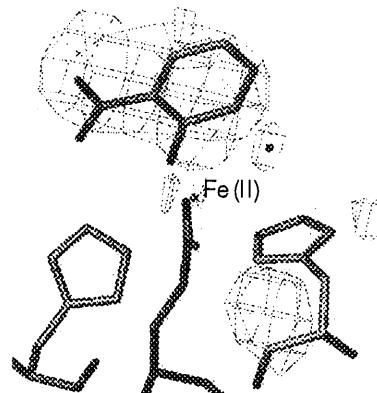



Fig. 1. Electron density around Fe(II)

### References

- [1] A. Kita, *et al.*, *J. Biochem.* 122, 201-204 (1997).
- [2] A. Kita, *et al.*, *Structure* 7, 25-34 (1999).