

## Characterization of transient intermediates of a calmodulin-peptide complex

Yoshinobu IZUMI<sup>\*1</sup>, Yuji JINBO<sup>1</sup>, Shigeo KUWAMOTO<sup>1</sup>, Nobuyuki Miho<sup>1</sup>, Hidenori YOSHINO<sup>2</sup>, Yuzuru HIRAGI<sup>3</sup>, Hiroshi KIHARA<sup>4</sup>

<sup>1</sup>Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Japan

<sup>2</sup>Department of Chemistry, Sapporo Medical University, Sapporo, 060-8556 Japan

<sup>3</sup>Institute for Chemical Research, Kyoto University, Uji, 611-0011 Japan

<sup>4</sup>Department of Physics, Kansai Medical University, Uyama, Hirakata, 573-1136, Japan

### Introduction

In the present work we have measured the dissociation kinetics of a  $\text{Ca}^{2+}$ -saturated calmodulin-peptide complex. The peptide studied is the  $\text{Ca}^{2+}$ -calmodulin dependent protein kinase IV calmodulin target-site. The effects of  $\text{Ca}^{2+}$  removal with a chelator were monitored using a SR-SAXS stopped-flow measurement. The present result allows the characterization of transient intermediates for the dissociation of  $4\text{Ca}^{2+}$ -calmodulin ( $4\text{Ca}^{2+}$ -CaM)-peptide complex. The result obtained is compared with other studies on the dissociation of calmodulin-peptide complexes. We confirm that the rate of the slowest step is determined by the contribution of a kinetic relaxation mechanism involving the intermediate species  $2\text{Ca}^{2+}$ -CaM-peptide, with two  $\text{Ca}^{2+}$  ions bound in the C-terminal domain, which has been previously suggested [1].

### Materials and Methods

A 19-residue peptide having the sequence (RKRLKAAVKAVVASSRLGS; CaMKIVp) and bovine brain CaM were used. Stopped-flow experiments were performed using an instrument for SAXS with a stopped-flow apparatus (Unisoku Co Ltd).

### Results and Discussion

The changes in SR-SAXS profiles on mixing of CaMKIVp with  $4\text{Ca}^{2+}$ -CaM (at 25°C) were almost complete within the instrument deadtime, indicating a bimolecular association was complete within a few msec. We therefore studied the dissociation process of  $4\text{Ca}^{2+}$ -CaM-peptide complex ( $\text{C}^+$ ). The results in Fig. 1 indicate that the molecular weight of the CaM-peptide complex does not change during the dissociation process, suggesting that the peptide binds to CaM even in the absence of  $\text{Ca}^{2+}$ , which is supported by a recent result[2]. Furthermore, the dissociation pathway is characterized by biphasic kinetics as shown in Fig. 2. The first event is the loss of two  $\text{Ca}^{2+}$  ions from the N-terminal lobe, followed by the loss of two  $\text{Ca}^{2+}$  ions from the C-terminal lobe. The intermediate species ( $\text{I}^+$ ) with two  $\text{Ca}^{2+}$  ions in the C-domain is observed within the first 50-100 msec of the

dissociation pathway. A subsequent activated state ( $\text{A}^*$ ) is observed at about 250 msec of the dissociation pathway. Final event is a conformational change in CaM-peptide complex ( $\text{A}^+$ ).



Fig. 1 Time course of the forward scattering amplitude  $I(0)$  for the dissociation of  $4\text{Ca}^{2+}$ -CaM-peptide complex.



Fig. 2 Time course of the radius of gyration of gyration  $R_g$  for the dissociation of  $4\text{Ca}^{2+}$ -CaM-peptide complex.

### References

[1] S.E.Brown et al., J.Biol.Chem. 276 3389(1998).

[2] Y.Izumi et al. FEBS Lett. 495 126(2001).

\* yizumi@dip.yz.yamagata-u.ac.jp