

The substitution effects at 140th and 141st position of Staphylococcal nuclease studied by solution X-ray scattering

Satoshi HIRANO, Hironari KAMIKUBO, Ken'ichi MIHARA, Yasushi IMAMOTO, and Mikio KATAOKA*
 Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Japan

Introduction

Staphylococcal nuclease (SNase) is a model protein for protein folding. Studies on the mutant that lacks 13 amino acids from the carboxyl terminus (Δ 137-149) demonstrate that the mutant takes a compact denatured structure under a physiological condition but has enzymatic activity. [1][2] These findings indicate that the C-terminal region must be involved in the essential interaction to keep the native structure.

In the last issue of the PF report, we reported the solution structures of the systematic deletion mutants of SNase from C-terminus. We suggested that Trp140 and Ser 141 are important for the stability of the native conformation. [3]

In order to analyze the importance of Ser141 and Trp140, we examined the effect of the substitution of these residues. We constructed 3 deletion and substitution mutants and 2 substitution mutants. We investigated their solution structures by small angle X-ray scattering (SAXS).

Experimental

The deletion and substitution mutants we constructed are Δ 142-149/S141A, Δ 142-149/S141N and Δ 141-149/W140A. We also constructed the substitution mutants, which are S141A and W140A. SNase and its mutants were expressed in *E. coli* and purified by urea extraction. [1] The samples were dialyzed against 10mM MOPS buffer at pH 7 overnight and concentrated to 12mg/ml. SAXS measurements were preformed with SAXS installed at BL-10C.

Result

Substitution effect on Trp140

We carried out SAXS measurements on W140A and Δ 141-149/W140A. Figure 1 shows Kratky plot of SAXS data of these two mutants, compared with WT, Δ 140-149 and Δ 141-149. The scattering profile of Δ 141-149 has an intermediate property between WT and Δ 140-149. However, the curve for Δ 141-149/W140A is essentially identical to the curve of Δ 140-149, indicating that the deletion effect of W140 and the substitution effect of W140A are the same on Δ 141-149.

The curve of W140A is largely different form that of WT and is similar to that of Δ 140-149. The R_g value of W140A is 22 \AA , which is also similar to the R_g value of Δ 140-149. These

results suggest that W140A takes compact denatured structure. The side-chain of 140th residue, tryptophan, is important to keep the native structure.

Substitution effect on Ser141

Figure 2 shows the SAXS profiles of WT, S141A, Δ 142-149/S141N and Δ 142-149/S141A. Profiles of S141A, Δ 142-149/S141N and Δ 142-149/S141A are identical to that of WT, suggesting that these mutants take native structure. This result suggests that the 141st residue should not be serine. However Δ 141-149 takes non-native structure. Therefore the existence of the 141st residue is important to keep the native structure.

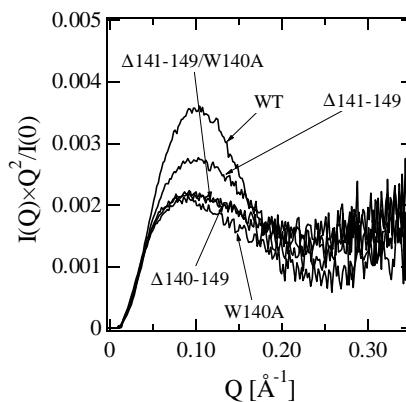


Figure 1
 Kratky plot of SAXS profiles for W140A and Δ 141-149/W140A, in 10mM MOPS at pH7, 25°C.

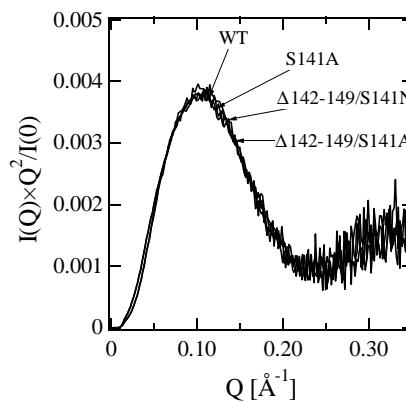


Figure 2
 Kratky plot of SAXS profiles for S141A, Δ 142-149/S141N and Δ 142-149/S141A in 10mM MOPS at pH7, 25°C.

Reference

- [1] Shortle, D., & Meeker, A., *Biochemistry* , 28, 936-944 (1989)
- [2] Flanagan, J. M. et al., *Proc. Natl. Acad. Sci. USA*, 89, 748-752 (1992)
- [3] Hirano, S. et al., *PF Activity Report 1999*, 17, 26

*kataoka@ms.aist-nara.ac.jp