STRUCTURES OF HEPARIN-bFGF COMPLEXES IN SOLUTIONS OBSERVED BY SMALL ANGLE X-RAY SCATTERING (I)

Rieko KOMINATO1, Yoshiaki YUGUCHI1, Hiroshi URAKAWA*1, Kanji KAJIWARA1
Tadato BAN2, Kaeko KAMEI2, Ryo TAKANO2, Saburo HARA2
1Faculty of Engineering and Design and 2Faculty of Textile Science,
Kyoto Institute of Technology, Matsugasaki, Sakyoku, Kyoto 606-8585, Japan

Introduction
Basic fibroblast growth factor (bFGF), also called heparin-binding growth factor, is one of the proteins responsible for cell growth. It is known that the sulfated polysaccharide such as heparin or heparan, can form a complex with FGF for promoting its receptor-binding and modulating FGF activities. Understanding this mechanism may expand the application spectrum of bFGF. The structural analyses on bFGF-heparin complexes have hitherto been conducted only in the crystalline state [1].

In this study, the nano-structures of heparin-bFGF complexes were observed by small angle X-ray scattering (SAXS) technique in the aqueous state.

Experimental
The bFGF sample was isolated from silkworms inoculated with recombinant virus Hy-NPV-FGF[2]. Porcine intestinal heparin was obtained from Viobin Corp.

The SAXS experiments were carried out with SAXES installed at BL-10C of Photon Factory.

Molecular models of heparin, bFGF and their complexes were built using “Cerius2” developed by Molecular Simulations Inc. The crystal structures offered the initial atomic coordinates for the modelling.

Results and Discussion
The mixing of heparin and bFGF induce the significant intensity increasing at smaller angle region as shown in Fig.1. This is another confirmation of the complex formation between heparin and bFGF using a scattering technique. The cross-section plots of heparin and the complex show the good linearity at small angle region. According Gunier approximation, both of them can be rod-like particles in solution having the cross-sectional radius of gyration of 0.57nm and 1.51nm, respectively. The mass per unit length, evaluated from the extrapolation of these analytical plots to zero angle, increases around 30% from heparin’s one under the assumption of the same electron density of heparin and the complex.

According the above results, the molecular model of the complex can be proposed; where bFGF molecules bind unilaterally to an extended heparin chain. The calculated SAXS intensities from the model are compared with experimental ones in Fig.2. There is the discrepancy at higher angles, which suggests the necessary improvement of the heparin conformation.

References

* urakawa@kk.chem.kit.ac.jp