

Dualcontrast microangiography with iodine filter synchrotron radiation

Yoshinori SUGIO¹, Etsuro TANAKA*¹, Naoichiro HATTAN¹, Yoshiro SHINOZAKI¹, Chizuko TSUJI¹, Yoshiro IWATA¹, Takafumi SEKKA¹, Yutaka TANAKA¹, Kosuke TOBITA¹, Masanori ISHII¹, Keiji UMETANI², Kenkichi TANIOKA³, Norihumi EGAMI³, Misao KUBOTA³, Kazunori MIYAKAWA³, Yuji OHKAWA³, Nobuo SAITO³, Hiroshi OHTAKE³, Ryo MOCHIZUKI⁴, Kouichi YAMAGUCHI⁴, Toshiaki KAWAI⁵, Katsuhiko SUZUKI⁵, Kinji TAKASE⁵, Hiroki KAWAKAMI⁵, Kazuyuki HYODO⁶, Masami ANDO⁶, Hidezo MORI^{1,7}

¹Tokai University School of Medicine, Bohseidai, Isehara-shi, Kanagawa 259-1193, Japan

²Japan Synchrotron Radiation Research Institute, Mikazuki, Sayo-gun, Hyogo 679-5198, Japan

³NHK Sciesnce & Technical Research Laboratories, Kinuta, Setagaya-ku, Tokyo 157-8510, Japan

⁴NHK Engineering Services, Inc., Udagawa, Shibuya-ku, Tokyo 150-0042, Japan

⁵Hamamatsu Photonics K.K., Toyooka, Iwata-gun, Shizuoka 438-0193, Japan

⁶Institute of Material Structure Sciences, National Laboratory for High Energy Physics, Oho, Tsukuba-shi, Ibaraki 305-0801, Japan

⁷National Cardiovascular Center Research Institute, Fujishirodai, Suita-shi, Osaka 565-8565, Japan

Introduction

Liver has a unique anatomy. It receives dual blood supply composed of hepatic artery and portal vein. These vessels and biliary tracts are contained in Glisson's capsule in the liver.

By conventional angiography or cholangiography, we can get only one vessel information at a time. It will be very useful in diagnosis if plural adjacent structures are demonstrated at a time.

Umetani et al. developed dualcontrast microangiographic system with iodine filter using synchrotron radiation. This system should make it possible to demonstrate two different vessels at the same time using iodine and the other different contrast agent such as gadolinium or bismuth.

Methods

In vivo imaging of intravenous cholangiography with the single energy approach was performed on a Japanese white rabbit at the BL-14C. The rabbit, weighing about 2.0kg, was anesthetized with Phenobarbital. The X-ray energy was adjusted to 33.3 keV, above the iodine K-edge energy, via the monochromator. Iodine contrast agent (Meglumine iotroxate) was injected intravenously at a dose of 100mg Iodine per kg of body weight over 2 minutes. The real-time contrast images were formed on a fluorescent screen, where 2 X 3 cm area was scanned by a high definition TV camera with an avalanche-type image pick-up tube and then stored as a digital image. A spatial resolution had been confirmed to be 30 μ m.

Following intravenous cholangiography, the rabbit had laparotomy. A catheter was inserted into the common bile duct. After retrograde injection of Iopamidol (contrast agent) via the catheter, the upper abdomen of the rabbit was scanned again.

Results

Bile ducts were visualized the most obviously 5 minutes after administration of the contrast agent. The caliber of the visualized smallest bile duct was approximately 400 μ m in diameter in the cholangiographic image. Peristalsis during excretion of the contrast medium from the common bile duct into duodenum was also recorded. In direct retrograde cholangiography, we could verify very fine bile duct of only 100 μ m in diameter.

Discussion

We could obtain "microcholangiography" by application of microangiographic system to cholangiography. Pathophysiology of liver diseases will be understood more precisely by fine depiction of two adjacent structures using microangiography system with dual contrast agents.

Acknowledgments: This work was partially supported by NEDO.

References

- [1] H.Mori et al., Radiology. 201, 173(1996)
- [2] H.Mori et al., Circulation. 89, 863(1994)
- [3] K.Umetani et al., J. Synchrotron Rad. 5, 1130-1132(1998)

* tanaka@is.icc.u-tokai.ac.jp