Characteristics of myocardial blood flow distribution in heart disorders associated with angiogenesis: Two dimensional mapping of heavy element-loaded microsphere in heart muscle by using monochromatic synchrotron radiation-excited x-ray fluorescence

Hidezo MORI1,2, Naoichiro HATTAN1, Yoshiro SHINOZAKI1, Etsuro TANAKA1, Hideki IWAGURO1, Kazunobu BAN1, Koichiro YOSHIOKA1, Hisanori FUJIKURA1, Yoshinori SUGIO1, Takaumi SEKKA1, Eriko KUWABARA1, Atsuo IIIDA3

1Tokai University School of Medicine, Bohseidai, Isehara-shi, Kanagawa 259-1193, Japan
2National Cardiovascular Center Research Institute, Fujishirodai, Suita-shi, Osaka 565-8565, Japan
3Institute of Material Structure Sciences, National Laboratory for High Energy Physics, Oho, Tsukuba-shi, Ibaraki 305-0801, Japan

We examined the hypothesis that transmyocardial laser revascularization (TMR: new surgical angiogenic therapy) relieves myocardial ischemia by increasing the blood supply to ischemic regions via the transmural channels, by means of acute canine experiments.

Ten TMR channels were created by using a CO2 laser (20 - 30 joule) in the mid-portion of the left ventricle (LV) supplied by the left anterior descending coronary artery (LAD). Regional blood flow during transient ischemia (2 min) induced by LAD ligation was compared before and 30min after the TMR. At the third transient ischemia the mid LV was cut along with the short axis for the analysis of NADH fluorescence in the regions around the TMR channels.

In the low-resolution analysis, blood flow reduction in the ischemic region (2 - 4 gram tissue) was not significantly altered after the TMR, and NADH fluorescence (2 - 3 cm2 area) was observed throughout the ischemic region without significant regional variation. High-resolution analysis (1mm x 1mm in area, 2.8 mg tissue, Figure) revealed that the regional flow after TMR in the regions 2 mm or less from the channel was lower than the flow before TMR (paired t test), and lower than the flow after TMR in the regions 3 mm or more away (ANOVA). NADH fluorescence was higher in the regions close to the channels (1 - 2 mm) than in the regions 3 - 4 mm away from them.

Creating TMR channels did not improve the blood supply to ischemic region and rather aggravated the local ischemia in the immediate phase.

References

*tanaka@is.icc.u-tokai.ac.jp