Observation of nuclear excitation by electron transition with an APD electron detector

Shunji KISHIMOTO*1, Taizo KAWAUCHI2, Katsuyuki FUKUTANI2 and Tatsuo OKANO2

1KEK-PF, Tsukuba, Ibaraki 305-0801, Japan
2 Institute of Industrial Science, Univ. of Tokyo, 4-6-1 Komaba, Tokyo 153-8505, Japan

Introduction
We succeeded in observing nuclear excitation by electron transition (NEET) on 197Au in K-shell photoionization with synchrotron radiation[1]. The NEET on 197Au occurs between the K(1S1/2)→M1(3S1/2) atomic hole transition (77.300keV) and the 77.351-keV nuclear transition (3/2+→1/2+, half life: 1.91ns). We have tested an APD detector for the NEET experiments under this project. The APD is used to detect internal-conversion electrons emitted from excited nuclei. The outputs from the APD were processed in a time spectroscopy system using a fast amplifier. The energy spectrum was investigated to confirm what radiations the detector observed and to decide a ratio of the conversion electrons measured by the spectroscopy system to that detected by the APD.

Experiments
The energy spectra of the APD detector were measured at beamline BL-14A. An X-ray beam from a Si(553) double crystal monochromator was defined to H1.0×V1.0 mm. A charge-sensitive preamplifier, Canberra 2001A was used to investigate energy spectra of an APD (Hamamatsu SPL4583). This device was 3 mm in diameter and had a depletion layer 30µm thick. The APD was installed in a vacuum chamber for the NEET experiment[2]. The APD was located on a plane perpendicular to the vertically polarized beam. We used gold targets of metal foil (3µm thick) covered with and without 36-µm Aluminum foil.

In order directly to measure a pulse-height distribution of a fast amplifier’s outputs, we took a single-channel scanning method with a constant fraction discriminator and a scaler. A fast amplifier, Philips Scientific 6954 was used.

Results
Figure 1 shows energy spectra measured at an incident X-ray energy of 80.77keV. In Fig. 1(a), a spectrum measured without aluminum foil is shown. A profile of L-photoelectrons is mainly observed and peaks of L X-rays are seen at 9-11-keV region. KLL-Auger electrons are observed as a hump around 50 keV. While in a spectrum using a gold target covered with aluminum foil, Fig. 1(b), profiles of electrons are not seen because the aluminum stopped all of electrons emitted from the surface of gold foil. Peaks of K X-rays (67-69 and 79 keV) are not seen in Fig. 1(a) though the fluorescence yield is high, 0.96. It is due to a small efficiency of the thin silicon APD. In a logarithmic scale of counts, K X-rays can slightly be distinguished in Fig. 1(b).

Pulse-height distributions of the fast amplifier were measured at 77.351keV and at 57.351keV. The peak of L-photoelectrons was seen as a main profile in each spectrum. By comparing the peak position of L-photoelectrons, we knew that the threshold level of CFD, 20mV corresponded to 35keV. It can be seen that the profile of L-photoelectrons measured at 77.351keV is the same as the spectrum of the L-internal conversion electrons. From these results, it was estimated that more than 71% contributed to the time spectrum in the L-internal conversion electrons detected by the APD.

References

*syunji.kishimoto@kek.jp