3. Beamlines under Construction

3-1. Construction of BL-1A

BL-1A was constructed as a joint project based on the following two proposals: a proposal for a “Study on correlated electron systems by a new research network” and a proposal for the “Crystal structure analysis of strongly correlated electron systems”. The former proposal is being conducted by five institutes: Institute of Materials Structure Science, Institute for Materials Research, the Institute for Solid State Physics, Institute for Molecular Science, and Institute for Chemical Research Kyoto University. The latter proposal is being conducted by Correlated Electron Research Center.

The aim of the former proposal is to make a new research field between material physics and material chemistry by using a new research network, which is called “collaboratory”. The new field covers not only a conventional system of strongly correlated electrons, but also a surface and an interface in a nano-structure system. The collaboratory is a network system to realize close coupling among researchers in different fields and to supply them an easy utilization of the experimental apparatus in remote facilities. This project consists of five groups: (a) a group for making new materials with multifunctions in strongly correlated electron systems, (b) a group for making new materials with a nanostructure, (c) a group for evaluating new materials by using some experimental apparatus controlled through the network system, (d) a group for making computer calculations for designing new materials, (e) a group for constructing the human network system.

The aim of the latter proposal is to precisely analyze the crystal structure of materials for new electronic devices and to elucidate the mechanism of the functions in strongly correlated electron systems. Materials including strongly correlated electrons, such as the colossal magnetoresistance system, are expected to be a large potential for future electronic devices. In these materials, three degrees of freedom of an electron (charge, spin, and orbital) play very important roles in their electronic and magnetic properties. In order to design new electronic devices we need information on the ordering of these degrees of freedom. Using synchrotron X-rays is a very powerful tool to study the ordering. Not only a conventional crystal analysis, but also a special technique, like resonant X-ray scattering, will be used to study the microscopic anisotropy of the electronic clouds.

In this beamline, X-rays are monochromatized by Si(111) double crystals and focused by a cylindrical bent mirror. Two kinds of diffractometers will be installed in this beamline: one is a diffractometer with an imaging plate to analyze the crystal structure quickly; the other one is a six-circles diffractometer for the analysis of a precise crystal structure. This beamline will be constructed during the summer shutdown of 2001 and the experiments will start in April, 2002.

Figure 1.
BL-1A is under construction between BL-1C and BL-1B.
3-2. New Beamlines at PF-AR

As described in the preceding volume of the Activity Report, the reconstruction and reinforcement of the PF-AR were approved in the supplemental budget of 1999. We could start thus renewal of the accelerator (vacuum system, monitor system and magnet system etc.) and construction of an X-ray undulator beamline (AR-NW2) for protein crystallography as well as time-resolved XAFS experiments.

In 2000, a second supplemental budget was approved for the construction of a new experimental hall in the northwest part of the PF-AR, as well as one more X-ray undulator beamline (AR-NW12). Figure 2 shows a top view of the PF-AR including a new NW experimental hall. We thus decided that beamline AR-NW2 would be constructed as a dedicated beamline for XAFS experiments and that beamline AR-NW12 would be dedicated to protein crystallography based on the multiple-wavelength anomalous diffraction (MAD) method. Details of these beamlines are described below.

AR-NW2 (XAFS beamline)

The specifications of this beamline are as follows:

1. In order to conduct conventional XAFS experiments, it is essential to realize a good energy tunability in the 5 ~ 25 keV energy range.
2. The photon flux of monochromated X-rays at the sample position should be at least \(10^{13}\) photons/s for a beam size less than \(0.5 \times 0.5 \text{ mm}^2\).
3. For time-resolved experiments with a dispersive XAFS arrangement, it is necessary to focus white X-rays in a vertical direction, which should have a relatively wider energy spread of the undulator radiation.

In order to achieve the above specifications, the beamline was designed as follows. Figure 3 shows the plan view of the beamline. The insertion device is an in-vacuum undulator at a period of 40 mm, and the number of periods is 90, which can cover an energy range of 5~25 keV by using the 1st, 3rd, and 5th harmonics of the undulator radiation. The device has an optional mechanics to make a tapered undulator in order to obtain a relatively wider energy spread of the undulator radiation.
spread ($\Delta E / E \sim 10^{-1}$) for the 3rd harmonics. The front end consists of a fixed mask, a beam-position monitor, an absorber, a beam shutter, a graphite heat absorber, XY-slits for white X-rays and Be windows. The main optical components are a double-crystal monochromator and a focusing mirror system, which are located 22.5 m and 25 – 28 m from the center of the insertion device, respectively (Fig. 4). The double-crystal monochromator consists of flat Si(111) crystals, which are cooled with liquid nitrogen in order to reduce any deformation caused by the heat loads. The circulation of liquid nitrogen is realized by a closed-loop system with two GM-refrigerators, which has a cooling power of 170 W each. Thus, it is possible to handle the incoming heat power up to about 300 W. The focusing mirror system has 4 mirror assemblies: a bent cylindrical mirror for double focusing of X-rays, a bent flat mirror for vertical focusing, and a double-mirror system (cut-off mirrors) to reduce a contamination of the higher harmonics. When a doubly focused beam is necessary for time-resolved experiments in a dispersive XAFS geometry. Then, one of the cut-off mirrors will be bent at the meridian direction to allow vertical focusing of the white X-rays.

AR-NW12 (Protein-crystallography beamline)

The scientific purpose of this beamline is protein crystallography based on the MAD method. The following specifications should be achieved at this beamline:

1. Good energy tunability in the 5 – 20 keV energy range as well as good energy resolution of 10^{-4} in order to perform MAD method.
2. Photon flux at the sample position higher than 10^{12} photons/s under the conditions of a focused beam size less than 0.2×0.2 mm2 and a beam divergence of less than 0.5 mrad.

Figure 5 shows a plan view of the beamline in the new NW-experimental hall. The insertion device is also an in-vacuum undulator with a period length of 40 mm; the number of periods is 100, which can cover an energy range of 7–16.8 keV by using the
Experimental Facilities

3rd harmonics of the undulator radiation. The front end consists of a fixed mask, a beam-position monitor, an absorber, a beam shutter, a graphite heat absorber, XY-slits and Be windows. The design concept of these components is similar to that of the AR-NW2. The main optical elements are a vertical collimating mirror, a double-crystal monochromator and a re-focusing mirror, as shown in Fig. 5. A flat mirror is bent for vertical collimation to achieve good energy resolution. The double-crystal monochromator consists of flat Si(111) crystals, which are cooled with liquid nitrogen in order to reduce the deformation caused by the heat loads. The system is the same as that of AR-NW2. The re-focusing mirror is a bent cylindrical mirror in order to realize a doubly focused beam at the experimental hutch.

The experimental hutch is 4 m × 4 m, in which an experimental table will be installed. It is designed in such a way that two different detectors can be installed with a reasonably easy mechanism for exchanging the two. The larger detector can be up to 1 m across the active area. The objects around the sample, such as a beam stop, a fluorescent detector, and a scattering guard collimator, are retractable for easy mounting and removal of crystals. The one-circle diffractometer will have a diameter of rotation of a few microns with a CCD microscope and UV/visible illumination.

As shown in Fig. 5, there are also several rooms for preparing samples, housing detectors, vacuum assemblies, and data processing, and a storage in the new NW experimental hall.

The time schedule of the construction is as follows: The installation of the AR-NW2 will be completed by the end of November, 2001, in accordance with the improvements of the accelerator. After we commission the accelerator and the beamline, at the beginning of 2002 we hope to see the first beam at AR-NW2. On the other hand, the new NW experimental hall (Fig. 6) will be completed by the end of March, 2002, and AR-NW12 will be installed by the end of September, 2002. Thus, we will see the first beam at AR-NW12 in October, 2002.

Figure 5.
Schematic layout of the new NW experimental hall. Beamline AR-NW12 for protein crystallography is now under construction.

Figure 6.
NW experimental hall is now under construction.