Characterization of transient intermediates of a calmodulin-peptide complex 2

Yoshinobu IZUMI*¹, Yuji JINBO¹, Tomohiro MATSUFUJI¹, Hidenori YOSHINO²,

Yuzuru HIRAGI³, Hiroshi KIHARA⁴

¹Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Japan

²Department of Chemistry, Sapporo Medical University, Sapporo 060-8556, Japan

³Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan

⁴Department of Physics, Kansai Medical University, Hirakata 573-1136, Japan

Introduction

We have previously reported that the EDTA-induced dissociation processes of Ca^{2+} ions from a complex of Ca^{2+} -saturated calmodulin ($4Ca^{2+}/CaM$) with Ca^{2+}/CaM -dependent protein kinase IV peptide (CaMKIVp) is characterized by biphasic kinetics[1], suggesting that the first event is the loss of two Ca^{2+} ions from the N-terminal lobe, followed the loss of two Ca^{2+} ions from the C-terminal lobe [2].

In the present work we have measured the dissociation kinetics of a complex of $2Ca^{2+}$ /CaM with CaMKIVp. The result obtained is compared with that calculated from an equimolar mixture of $4Ca^{2+}$ /CaM/CaMKIVp and $0Ca^{2+}$ /CaM/CaMKIVp. We confirm again that the rate of the slowest step is determined by the contribution of a kinetic relaxation mechanism involving the intermediate species, which have been previously suggested [2].

Materials and Methods

A 19-residue peptide having the sequence (CaMKIVp: RRKLKAAVKAVVASSRLGS) and recombinant CaM were used. Stopped-flow experiments were performed using an instrument for SAXS with a stopped-flow apparatus (Unisoku Co.Ltd) at BL10C of PF.

Results and Discussion

The result in Fig. 1 indicates that the molecular weight of the CaM-peptide complex does not change during the dissociation process, suggesting that the peptide binds to CaM even in the absence of Ca²⁺, which is supported by a recent report [3]. Furthermore, the dissociation pathway is characterized by monophasic kinetics as shown in Fig. 2, in which the result corresponds to the loss of two Ca²⁺ ions from the C-terminal lobe. The experimental value of Rg at t=0 is 19.7A, while the calculated value under the condition in which $4Ca^{2+}/CaM/CaMKIVp$ (Rg=17.6A) and $0Ca^{2+}/CaM/CaMKIVp$ (Rg=20.3A) equally exist, is 19.1A. The significant difference indicates the existence of the intermediate species and supports the contribution of a kinetic relaxation mechanism involving them. From the Rg value, it is suggested that the conformation of $2Ca^{2+}/CaM/CaMKIVp$ is a dumbbell-like structure similar to $4Ca^{2+}/CaM/CaMKIV$.

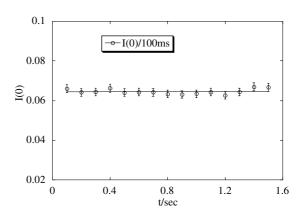


Fig. 1 Time course of the forward scattering amplitude I(0) for the dissociation of $2Ca^{2+}/CaM/CaMKIVp$ complex.

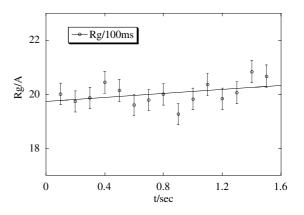


Fig. 2 Time course of the radius of gyration Rg for the dissociation of $2Ca^{2+}/CaM/CaMKIVp$ complex.

References

- [1] Y.Izumi et al., PF Activity Rep. 2000 B18, p.235.
- [2] S.E.Brown et al., J.Biol.Chem. 276 3389(1998).
- [3] Y.Izumi et al., FEBS Lett. 495, 126(2001).* yizumi@yz.yamagata-u.ac.jp