XAFS study on structure of Bi species supported on amorphous silica

Chizu MURATA, Tomoaki SUNADA, Hisao YOSHIDA*, Tadashi HATTORI Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan

Introduction

The direct gas phase epoxidation of propene by molecular oxygen has been desired, and has been attempted by many researchers. As a new approach, we have investigated 'photoepoxidation' of propene using only O_2 over several systems, and have reported that Bi_2O_3/SiO_2 showed high activity for propene photoepoxidation [1]. In the present study, we prepared a series of Bi_2O_3/SiO_2 samples, and investigated the structure of Bi species on silica and their propene photoepoxidation activity.

Experimental

 Bi_2O_3/SiO_2 was prepared by the conventional impregnation method from amorphous silica prepared by sol-gel method with a nitric acid aqueous solution of $Bi(NO_3)_3$, followed by calcination at 773 K for 5 h in flowing dried air. The photooxidation of propene was performed in a similar manner as previously reported. [1]

Bi L_{III}-edge XAFS spectra were measured at the BL-10B station [2] at KEK-PF with a Si(311) channel cut monochrometer in transmission mode at room temperature. Prior to measurement, the samples were treated with 100 Torr oxygen (1 Torr = 133.3 N m⁻²) at 773 K for 1 h, followed by evacuation at 673 K for 1 h. The pretreated sample was sealed in a polyethylene bag under a dried N₂ atmosphere without exposing to air.

Results and Discussion

The photooxidation of propene by molecular oxygen was investigated over Bi_2O_3/SiO_2 samples containing different amount of Bi (0.7 – 30 mol%). With increasing Bi content, the conversion of propene increased up to 1.5 mol% of Bi, and then decreased. The selectivity to PO was high such as 23 % on the samples containing below 1.5 mol% of Bi, and decreased with increasing Bi content. These results mean that the highly dispersed Bi species would be active sites for this reaction.

From XRD patterns, it was shown that α -Bi₂O₃, β -Bi₂O₃ and Bi₂SiO₅ were formed over the Bi₂O₃/SiO₂ samples containing more than 10 mol% of Bi.

Fig. 1 shows the Fourier Transforms of Bi L_{III} -edge EXAFS spectra of Bi_2O_3/SiO_2 and Bi_2O_3 samples. All of Bi_2O_3/SiO_2 samples showed a clear maximum at 1.65 Å owing to Bi-O bonds. $Bi_2O_3/SiO_2 0.7$ mol% and 1.5 mol% samples showed the peak with high intensity. With increasing Bi content, the peak became lower. This would be attributed to the formation of α -Bi_2O_3, β -Bi_2O_3 and Bi_2SiO_5 that have a variety of Bi-O distances. The peaks

due to Bi-Bi bonds were not clearly observed over all the spectra of Bi_2O_3/SiO_2 samples.

Table 1 shows structural parameters of the first Bi-O shell determined by the curve-fitting analysis on Fourier-filtered EXAFS of Bi₂O₃/SiO₂ 0.7 mol% and 1.5 mol% samples using empirical parameters of Pb-O shell extracted from EXAFS spectrum of PbO. $\Delta(\sigma^2)$ corresponds to the relative Debye-Waller factor deviated from those of PbO (Pb-O shell). The coordination number and the distance of the nearest Bi-O bond were 4.0 ± 0.1 and 2.31 Å, respectively. This coordination number is quite different from those of α -Bi₂O₃, β -Bi₂O₃ and Bi₂SiO₅. Bi species would be highly dispersed and 4-fold coordinated in the silica matrix below 1.5 mol% of Bi content.

From these results, it is suggested that the highly dispersed tetrahedral Bi species are active for photoepoxidation of propene, while the Bi clusters, α -Bi₂O₃, β -Bi₂O₃ and Bi₂SiO₅, are less active for photooxidation of propene.

Fig. 1 Fourier Transforms of Bi L_{III} -edge EXAFS spectra of (A) Bi₂O₃/SiO₂ 0.7 mol % (---), 1.5 mol % (---), and 3.0 mol % (---). (B) Bi₂O₃/SiO₂ 10 mol % (---), 30 mol % (---), and Bi₂O₃ (---). The *k*-range for the Fourier transformation: 4-12 Å⁻¹.

Table 1Curve-fitting results on Fourier-filtered EXAFS
of Bi_2O_3/SiO_2 samples.

Bi content / mol %	CN	r / Å	$\Delta(\sigma^2)$ / 10 ⁻³ Å ²	$R_{\rm f}$ /%
0.7	4.1	2.31	-3.41	10.5
1.5	3.9	2.31	-3.31	9.65

The *R*-range for back Fourier transformation: 1.1-2.3 Å, the curve fitting *k*-range : $4-11\text{\AA}^{-1}$.

References

[1] H. Yoshida, et al., J. Catal., 194, 364 (2000).

[2] M. Nomura et al., KEK Report 89-16, (1989).

* yoshidah@apchem.nagoya-u.ac.jp