Local structure analysis of metal sulfide catalysts for HDS by means of in situ fluorescence X-ray absorption spectroscopy

Takeshi KUBOTA^{*1}, Naoto HOSOMI¹, Takashi MATSUI², Kyoko BANDO², Yasuaki OKAMOTO¹ ¹Department of Material Science, Shimane-Univ., Matsue, Nishikawatsu, Shimane 690-8504, Japan ²National Institute of Advanced Industrial Science and Technology (AIST), Tukuba 305-8565, Japan

Introduction

Currently, Co-Mo sulfide catalysts are used for HDS treatment. It is well known that catalytic synergy generates between Co and Mo sulfides in the catalyst system. Numerous studies have been made to clarify the cause of the synergy effects by means of XAFS. But the information about active site of the Co-Mo catalysts is not enough under the reaction condition. The characterization of the catalyst during HDS reaction is necessary to clarify HDS mechanisms and catalyst improvement. In this study, we investigated the local structure analysis of supported Co-Mo sulfide catalysts under the sulfidation and thiophene HDS reaction conditions by means of in situ fluorescence XAFS.

Experimental

A continuous flow reaction line at atmospheric pressure was constructed in the beamline hatch at BL-9A. An in situ fluorescence XAFS cell was designed to have two windows for collection of incident and fluorescence X-The reaction gas was treated by a post-catalyst, rav. NaOH solution, ZnO column and combustor installed in the reaction line. The concentration of H₂S at outlet of the line was reduced upto less than 1ppm. The catalyst samples were pressed to self-supported disks. The disk was sulfided in a 5% of H₂S/H₂ gas (50ml/min) at 623 K. Then a 4% of thiophene/H₂ gas (50ml/min) was flowed to the sample at 623 K. Co K-edge XAFS spectra for Co-Mo catalysts were measured using a Lytle detector with a Fe filter. The synchrotron radiation was monochromatized by a Si(111) monochromator. CoS_x-MoS₂/Al₂O₃ and CoS_x-MoS_x/NaY catalysts were prepared by a CVD method using $Mo(CO)_6$ and $Co(CO)_3(NO)$.

Results and Discussion

Fig.1 shows Co K-edge XANES spectra for CoS_x-MoS_2/Al_2O_3 in a flow of H_2S/H_2 gas at room temperature. The spectrum measured in the air shows a sharp white line due to O_2 adsorption. But the peak intensity was immediately reduced by a flow of H_2S/H_2 . Fig.2 shows Fourier transforms of k³-weighted EXAFS oscillations of Co K-edge for Co-Mo sulfide catalysts measured at 623 K in the H_2S/H_2 flow, H_2 flow and HDS reaction. The difference in FT peak intensity is not observed between of calaysts measured in the H_2 flow and HDS reaction. It is considered that in the HDS reaction, Co atoms arehighly unsaturated.

Fig. 1 Co K-edge XANES spectra for Co-Mo sulfide catalysts measured at room temperature in H_2S/H_2 flow.

Fig. 2. Fourier transforms of k^3 -weighted EXAFS oscillations of Co K-edge for Co-Mo sulfide catalysts measured at 673 K in the H₂S/H₂ flow, H₂ flow and HDS reaction.

*kubotake@riko.shimane-u.ac.jp