B *K* emission spectra for MgB₂ and Mg_{0.8}Al_{0.7}B₇

Noboru MIYATA*¹, Takashi IMAZONO¹, Mihiro YANAGIHARA¹, Makoto WATANABE¹, Takahiro MURANAKA², Jun AKIMITSU² ¹IMRAM, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan ²Aoyama-Gakuin University, Chitosedai, Setagaya-ku, Tokyo 157-8572, Japan

Introduction

Recently, MgB, was shown to be a superconductor with Tc=39 K by Nagamatsu et al [1]. Since the discovery, the nature of the superconductivity in MgB₂ has been studied. The results suggest strongly that MgB₂ is a conventional BCS-type phonon-mediated superconductor. Within the related materials, Al-doped MgB, was one of the objects whose superconductivity was earlier estimated by theoretical and experimental aspects [2]. To confirm these results, soft-X-ray emission (SXE) spectroscopy is a useful method. Since the SXE spectrum reflects the partial density of states (PDOS) of the valence band, B K emission for MgB₂ shows the PDOS of the B 2p band. B 2p is a dominant component at the Fermi level, which is closely related with the Tc of superconductors. Thus B K emission spectra of MgB, and Al-doped MgB, $(Mg_{0.8}Al_{0.2}B_{2})$ provide much information of the superconductivity in MgB₂.

Experiments

The samples were sintered polycrystals of MgB₂ and Mg_{0.8}Al_{0.2}B₂. Phase purity and the *Tc* of the samples were estimated before the SXE measurements. X-ray diffraction patterns showed that all the samples were of a hexagonal phase with the lattice constants *a*=0.3086 nm and *c*=0.3524 nm for MgB₂ and slightly larger for Mg_{0.8}Al_{0.2}B₂. The temperature-dependent magnetization measurements showed that the *Tc* of the samples were 39 K for MgB₂ (*x*=0) and 29 K for Mg_{0.8}Al_{0.2}B₂, respectively. SXE experiment was performed at BL-16B. The FWHM of the incident SR soft X-ray at 191.1 eV was 0.5 eV, and of the spectrometer we used was 0.8 eV. Samples were filed in the preparation chamber before the measurements to remove surface contaminations.

Results and discussion

Figure 1 shows the B K emission spectra measured for MgB_2 and $Mg_{0.8}Al_{0.2}B_2$. The spectrum for MgB_2 (solid circles) has a main peak around 183 eV and Rayleigh scattering peak around 191eV. The spectral shape almost resembles the PDOS obtained by the band calculation of MgB_2 . Compared with this spectrum, that for $Mg_{0.8}Al_{0.2}B_2$ (open circles) shifts about 0.3 eV towards the lower energy side.

The reason of the peak shift is explained as follows; B

2p band, which is shown by the B K emission spectrum, can separate into σ and π bands. The σ band is pulled up by ionized Mg, which results in a hole-doping into the σ band. The peak of the B K emission spectrum of MgB₂ is contributed from the σ band around the M and L point in Brilluan zone, positioned about 2 eV below the Fermi level. The B-B in-plainer bonding is shortened by Al doping. It causes the σ bonding to be tight, and results in lowering of the σ band. This effect may cause the shift of the spectra qualitatively.

Figure 1: B K SXE spectra for MgB₂ and Mg_{0.8}Al_{0.2}B₂. The peak at about 191 eV in each spectrum is due to the elastic scattering of the incident soft X-rays.

References

- J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, Nature 410 63 (2001)
- [2] J. S. Slusky, N. Rogado, K. A. Regan, M. A. Hayward, P. Khalifah, T. He, K. Inumaru, S. M. Loureiro, M. K. Haas, H. W. Zandbergen and R. J. Cava, Nature **410** 343 (2001)

*nmiyata@mit.pref.miyagi.jp,

Present address: Industrial Technology Institute, Miyagi Prefectural Government, Akedori, Izumi-ku, Sendai 981-3206, Japan.