4B/2000G215

Analysis of crystal structure for bismuth layer-structured oxides

Yuji NOGUCHI^{*1}, Masaru MIYAYAMA², Tetsuichi KUDO²

¹ Department of Applied Chemistry, School of Engineering, The University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

² Institute of Industrial Science, The University of Tokyo,

7-22-1 Roppongi, Minato-ku, Tokyo 106-8558, Japan

Introduction

Ferroelectric SrBi, Ta, O_o (SBT), one of the promising candidate materials for nonvolatile random-access memories, has a layered structure. Thin films with compositions deviating from the stoichiometry of SBT have been extensively studied to improve ferroelectric properties. Noguchi et al.[1] reported that the remanent polarization (P_{\perp}) of the films with Sr-deficient and Biexcess composition, Sr_{0.8}Bi_{2.2}Ta₂O₉, is larger than that of stoichiometric SBT. In spite of extensive efforts to improve the ferroelectric properties of thin films, the fundamental nature and the crystal structure of Srdeficient and Bi-excess SBT have not yet been elucidated. This report describes the results of the structure refinement for stoichiometric SBT and Sr_{0.73}Bi_{2.18}Ta₂O₀ through the Rietveld analysis of synchrotron-radiation diffraction.

Experimental

Ceramic samples with nominal compositions of SrBi₂Ta₂O₉ (stoichiometric SBT), SrBi_{2.04}Ta₂O₉ (Bi-ex. SBT), Sr_{0.73}Bi_{2.27}Ta₂O₉ and Sr_{0.73}Bi_{2.18}Ta₂O₉ were prepared by the conventional solid-state reaction from ground powders of SrCO₃, Bi₂O₃, and Ta₂O₅ of 99.99% purity. The final sintering was performed at 1200 °C for 4 h. The samples obtained had a density of over 98 % of the theoretical density. For diffraction measurements, the calcined powder was fired at 1100 °C for 4 h to prevent grain growth and preferred orientation.

Synchrotron-radiation diffraction patterns were obtained using a powder diffractometer with a multiplearm system at BL-4B2 of the Photon Factory in KEK¹⁶. The patterns obtained were analyzed by the Rietveld method (the RIETAN program) using the $A2_1am$ orthorhombic symmetry. For the values of anomalous scattering factors, f' and f'', a table calculated by Sasaki was used.

Results and Discussion

Figure 1 shows the result of the Rietveld analysis of the powder diffraction pattern. In the analysis, excess Bi was assumed to be substituted with cation vacancies at the perovskite *A*-site. The calculated pattern fits the observed data fairly well, confirming a single phase with SBT structure. The composition at the *A*-site determined by the Rietveld analysis was $(Sr_{0.73(3)}Bi_{0.18(3)} \Box_{0.09})$, where \Box indicates cation vacancies. This analysis reveals that the charge neutrality in the crystal of $Sr_{0.73}Bi_{2.18}Ta_2O_9$ is

satisfied through the substitution of Bi with cation vacancies at the *A*-site. Thus, these Rietveld results become direct evidence that Bi ions are substituted as *trivalent ions* with cation vacancies at the *A*-site [2].

In the SBT structure with the $A2_1am$ orthorhombic symmetry, the *a* axis is the polar axis, and constituent ions are displaced along the *a* axis. The spontaneous polarization (P_s) can be calculated by:

$$P_s = \Delta_i \left(m_i \times \Delta x_i \times Q_i e \right) / V, \tag{1}$$

where m_i is the site multiplicity, Δx_i is the atomic displacement along the *a* axis from the corresponding position in the parent tetragonal (I4/mmm) structure, Q_e is the ionic charge for the *i*th constituent ion, and V is the volume of the unit cell. Using the formal charge (+2 for Sr, +3 for Bi, +5 for Ta, -2 for O) in the calculation, P_{c} of stoichiometric SBT was estimated to be 16 μ C/cm², which agrees well with the value determined from the data on the basis of the single-crystal structure analysis performed by Rae *et al.*⁵ For A-def. SBT, P_s was found from calculation to be 20 μ C/cm² using the result of our Rietveld analysis, and this increase in P_s is consistent with our polarization hysteresis measurements shown in Fig. 3. The structural analysis indicates that the substitution of Bi with cation vacancies at the A-site enhances the intrinsic ferroelectricity of SBT.

Fig. 1 Result of the Rietveld analysis of the powder synchrotron-radiation diffraction pattern for $Sr_{0.73}Bi_{2.18}Ta_2O_4$. A wavelength of 0.1 nm was used to collect the diffraction data. \varDelta indicates the difference between the observed and calculated values.