In situ XAFS study on molybdenum oxide catalysts supported on zirconia by molten salt preparation

Nobuyuki MATSUBAYASHI^{*1}, Motoyasu IMAMURA¹, Koichi SATO¹, Tomoaki TANAKA¹, Kyoko K. BANDO¹, Hiromichi SHIMADA¹ Pavel AFANASIEV² and Christophe GEANTET²

¹National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan ²Institut de Recherches sur la Catalyse, 2 avenue Albert Einstein, 69626 Villeurbanne cedex, France

Introduction

Catalyst preparation by the molten salt method has been shown to produce novel catalysts with high surface areas. In the preparation of molybdenum catalysts, the structures and the reaction mechanisms of the intermediates were not yet clarified. Because these intermediates do not have long-range ordered structures, we applied XAFS to the structural analyses involving composition determination of molybdate species in mixed KNO₃ and NaNO₃ salt [1]. In the previous study, we have clarified the changes in the composition of molybdate species during the catalyst preparation procedures [2].

In the present report, the reaction behavior of the preparation of unsupported molybdate catalysts in molten nitrate was investigated by *in situ* EXAFS. For this purpose, XAFS measurements were done using an *in situ* cell at various temperatures between 298 and 773 K.

Experimental

Unsupported molybdate catalysts were prepared from a MoO₃ precursor (5mg) with 150mg of NaNO₃ in a quartz reactor. The amount of molten nitrate corresponds to a 10-20 fold molar excess. The mixture was heated up to 773K being kept for 1h stepwise by 50 K during a XAFS measurement as Fig.1. The Mo K-edge XAFS measurements were performed at the Photon Factory (BL10B) using a Si(311) channel-cut crystal monochromator. Fourier transformation was performed for Δk =80 nm⁻¹ of Mo K-edge EXAFS. The phase shift and backscattering amplitude factor were corrected by using the calculated values of FEFF8 for Mo as an absorber and O as a scatter in crystalline Na₂MoO₄ .2H₂O.

Results and discussion

Figure 1 shows XANES spectra. of Mo K-edge of $MoO_3/NaNO_3$ at 298 – 773 K plotted vs. time. A disorder of the spectra was found at melting point. The edge shape was changed from that of MoO_3 to that of $MoO_4^{2^2}$ at the melting point indicating the change of dominant species.

Figure 2 shows the Fourier transforms of Mo K-edge EXAFS of $MoO_3/NaNO_3$ measured at 298-773K. The peak at 0.36 nm is assigned to Mo-Mo scattering of the MoO_3 structure. This indicates that the local structure of MoO_3 precursor remains intact before melting. With increasing temperature, the intensities of the peaks at 0.36 nm decrease, whereas the intensities of the peaks at 0.18 nm corresponding to Mo-O scattering in the highly symmetrical tetragonal $MoO_4^{2^2}$ structure increase. These

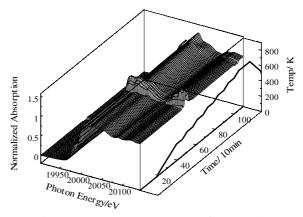


Fig.1 *in situ* XANES spectra. of Mo K-edge of MoO₃/NaNO₃ at 298 – 773 K.

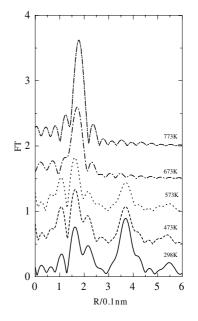


Fig.2 Fourier transforms of Mo K-edge EXAFS of MoO₃/NaNO₃ measured at 298-773K.

results show that the MoO_3 precursor transforms into MoO_4^{-2-} with increasing temperature.

References

[1] N. Matsubayashi et al., J. Phys IV France, 7(2), 1179 (1997).

[2] N. Matsubayashi *et al.*, *Journal of Synchrotron Radiation*, **8**, 610 (2001).

* n-matsubayashi@aist.go.jp