|
Photon Factory Activity Report 2002 Part B: Users' Report Keyword Index |
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]
| Keyword | Page |
A | |
| α-sexithienyl | 90, 91, 193 |
| absorption edge | 122, 276 |
| actinide | 37 |
| activated carbon fiber | 89 |
| adsorbed film | 85 |
| adsorbent | 18 |
| adsorption | 51, 53, 57, 61, 89, 123 |
| Ag | 180, 186 |
| Ag(111) | 90 |
| Ag/Si(110) | 52 |
| agarose gel | 184 |
| air/water interface | 51, 85 |
| airborne particle | 22 |
| Al2O3 | 54, 93 |
| Al-Ag single crystal | 162 |
| alkaline serine protease | 229 |
| alkene epoxidation | 45 |
| alkene hydrogenation | 30 |
| Al-Ni-Co quasicrystal | 137 |
| amino acid | 14 |
| ammonia | 7 |
| amorphous alloy | 157 |
| amphiphilic compound | 153, 166 |
| amyloid | 239 |
| analytical transmission electron microscopy | 216 |
| angular resolution | 206 |
| anharmonicity | 48 |
| anisotropic nanoparticles | 44 |
| anomalous Debye-Waller factor | 137 |
| anomalous dispersion | 212 |
| anomalous scattering factor | 212 |
| antiferromagnet | 101 |
| antiferromagnetic domain | 114 |
| antiferromagnetic order | 131, 135, 140 |
| antiferroquadrupolar order | 139, 140, 141 |
| antifungal peptide | 224 |
| antifungal protein | 225 |
| apoptosis | 259 |
| Ar | 5 |
| archaea | 252 |
| archaeology | 4 |
| ARPES | 52, 74, 77, 78, 79, 82, 109, 113 |
| As | 18 |
| Aspartate racemase | 226 |
| asteroids | 210 |
| asymmetry factor | 281 |
| atomic flip | 137 |
| atomic resolution | 224 |
| ATS | 122 |
| Au/Ta | 70 |
| Auger electron spectroscopy | 49 |
| Auger transition | 9 |
| autocrine mobility factor | 230 |
| autoionization | 10 |
| autoregulator | 211 |
| avalanche diode | 277 |
| |
| β-lactoglobulin | 255 |
| B 1s emission | 268 |
| Bacillus thuringiensis | 214 |
| band | 82 |
| band offsets | 68, 72, 75 |
| base lesion | 257 |
| Be | 3 |
| BeO | 215 |
| Bi | 50 |
| bilayer | 166 |
| bimetallic cluster | 192 |
| binding sites | 244 |
| biological object | 260 |
| biomedical application | 262 |
| biomembrane | 247 |
| bismuth oxide | 143 |
| block copolymer | 159, 161 |
| BN | 65 |
| Borrmann effect | 213 |
| buffer layers | 171 |
| buried oxide layer | 84 |
| |
| C6H5F | 80 |
| C70/Si heterojunction | 68 |
| Ca | 249, 253 |
| Ca2CoSi2O7 | 204, 209 |
| Ca3Co4O9 | 111 |
| calcination temperature | 26 |
| calcite | 152 |
| calcitonin | 239 |
| calmodulin | 253 |
| calyculin | 227 |
| cancer | 230, 259 |
| canting angle | 139 |
| carbohydrate | 249 |
| carbon | 187 |
| carbon nano structure | 118 |
| carbon nanotube | 115 |
| carbonaceous matter | 38 |
| carbonylation | 32 |
| CaSiO3 | 216 |
| catalyst | 16, 19, 25, 27, 28, 29, 30, 31, 32, 39, 42, 45, 54, 66, 67, 149, 168, 187, 196 |
| cationic surfactant | 51 |
| CBD-Cd | 171 |
| CCD camera | 274, 275, 288 |
| CCD detector | 176 |
| Ce | 264 |
| Ce3Al | 220 |
| cell killing | 246 |
| cell membrane | 232 |
| CeO2 | 43 |
| chalcogenide | 124 |
| chaperone | 250, 251 |
| charge ordering | 99, 100, 130 |
| charge-density-wave | 113 |
| chemical effect | 287 |
| chemical shift | 276 |
| chemical speciation | 22 |
| chemical state | 46 |
| cholera toxin | 234 |
| cholesterol | 232 |
| chondrite | 38 |
| chromatin | 243 |
| chromosome aberration | 246 |
| CIA | 243 |
| Cl | 201 |
| cluster compounds | 13 |
| clustering | 239 |
| CO | 58, 61 |
| CO adsorption | 31 |
| Co nano cluster | 97 |
| CO oxidation | 196 |
| CO photo-oxidation | 17 |
| Co/Ir multilayer | 165 |
| Co/N/Cu(001) | 59 |
| Co/Pd(111) | 58, 61, 95 |
| CO2 | 2 |
| cobalt oxide | 111 |
| CoC2 | 13 |
| coherence | 271 |
| coincidence spectroscopy | 6, 9, 10, 49, 86 |
| colloid | 180, 186 |
| combinatorial chemistry | 174 |
| combinatorial laser molecular beam epitaxy | 146 |
| compression | 219, 221 |
| Compton scattering | 116 |
| Compton spectrometer | 287, 288 |
| conformation | 153 |
| conveyor belt | 282 |
| coordination number of Ti | 167 |
| coronary spasm | 263 |
| correlation lengrh | 2, 11 |
| corrosion | 200, 201, 202, 276 |
| cosmic dust | 210 |
| counting rate | 286 |
| CoxSey | 124 |
| Cr oxide | 151 |
| Cr/6H-SiC | 87 |
| CrAs | 189 |
| CrB2 | 268 |
| crossbridge | 236 |
| crystallin | 251 |
| crystalline-crystalline diblock copolymer | 185 |
| crystallinity | 188 |
| crystallite size | 96 |
| crystallization | 120, 161, 182, 185 |
| CTR scattering | 267 |
| Cu | 46 |
| Cu(111) | 193 |
| Cu(OH)2 | 44 |
| cubic phase | 241 |
| CuInSe2:Cd | 171 |
| Cu-Sr10(PO4)6(OH)2 | 149 |
| CVD | 65, 73 |
| cyclohexane | 11 |
| cylindrical cassette | 280, 283 |
| cysteine | 14 |
| cystine | 14 |
| cytokine | 230 |
| |
| DAFS | 204 |
| data collection system | 280, 282 |
| data process | 283 |
| Debye temperature | 181 |
| deconvolution | 208 |
| dendrimer | 153 |
| dendrites | 173 |
| density of states | 87 |
| depth-profiling | 197, 198 |
| depth-resolved technique | 270 |
| detector | 145, 223, 250, 251, 269, 270, 277, 279, 286 |
| DGA | 41 |
| diamond anvil cell | 205, 216, 218, 220 |
| dication | 9 |
| diffraction enhanced | 273 |
| diffuse scattering | 63, 64, 137 |
| diffusion | 69 |
| digital electronics | 286 |
| diluted magnetic semiconductor | 112, 146, 147, 177 |
| dimer | 41 |
| disorder | 127, 194 |
| disperive NEXAFS | 56 |
| dissociation | 4, 6, 7, 8 |
| dissociative photoionization | 10 |
| DNA damage | 246, 257 |
| DNA methyltransferase | 238 |
| DNA repair | 258 |
| double ionization | 10 |
| double perovskite | 136 |
| doubly excited states | 6, 7 |
| DXAFS | 31, 32 |
| DyB2C2 | 139, 140, 141 |
| |
| E. coli | 252 |
| EA2CuCl4 | 133 |
| Ecommia ulmoides | 224 |
| edge jump | 51 |
| effective pair potential | 191, 195 |
| efflux pump | 248 |
| Egypt | 46 |
| electrochemical reactions | 202 |
| electrodeposits | 173, 176 |
| electron correlation effects | 113 |
| electron density | 261 |
| electron detector | 277 |
| electron energy analyzer | 49, 284 |
| electronic structure | 113, 118 |
| electron-ion coincidence spectroscopy | 49, 86 |
| element mapping | 176 |
| elemental analysis | 285 |
| emittance | 271 |
| emulsion | 180, 186 |
| Endo III | 257 |
| energy filtered | 70 |
| energy resolution | 287 |
| energy resolution | 288 |
| Ensemble Effect | 213 |
| epidermis | 233 |
| epoxidation of alkene | 167 |
| equation of state | 218 |
| Er | 190 |
| estuary | 21 |
| ethylene | 55 |
| ethylene glycol | 255 |
| ETS-10 | 167 |
| Eu | 34 |
| Eu(Pt1-xNix)2Si2 | 101 |
| EXAFS | 17, 18, 20, 23, 25, 26, 28, 29, 30, 33, 35, 37, 39, 41, 42, 89, 90, 123, 124, 125, 126, 127, 128, 129, 146, 147, 148, 150, 163, 168, 170, 179, 181, 183, 186, 187, 189, 190, 192, 195, 203 |
| EXPEEM | 70 |
| extinction effect | 213 |
| |
| far-UV | 246 |
| Fe | 18, 264 |
| Fe silicide film | 69 |
| Fe/Cu(100) | 270 |
| Fe/Pd multilayer | 117 |
| Fe/Si multilayer | 62 |
| Fe2O3 | 71 |
| Fe3BO6 | 272 |
| Fe2O4 | 200 |
| Fe80B20 | 157 |
| FeAlO3 | 219 |
| Fe-doped GaN | 147 |
| Fe-doped ZnO | 146 |
| FePt | 155 |
| FERM | 245 |
| Fermi surface | 116 |
| ferroelectric liquid crystal | 156 |
| ferroelectrics | 148 |
| ferromagnet | 147, 177 |
| fiber | 188, 266 |
| fibroin | 188 |
| fine particles | 119 |
| florescence spectroscopy | 87 |
| fluctuation | 2 |
| fluorescence | 5, 6, 7 |
| fluorescence spectroscopy | 27 |
| fluorescent X-ray CT | 260 |
| fluorite-type structure | 143 |
| focusing monochromator | 281 |
| Fourier transform spectroscopy | 1 |
| Fpg | 257 |
| fractal | 164 |
| FRED | 204 |
| fuel cell | 196 |
| full frame transfer | 274 |
| fullerene | 68 |
| |
| γ-Mg1.97SiH0.03O4 | 205 |
| GaAs:Er | 190 |
| GaN | 147 |
| gandolfi camera | 210 |
| ganglioside | 234, 247 |
| GaP(001) | 81 |
| gaseous detectors | 269 |
| Gastrodia elata | 225 |
| Gd/Co multilayers | 107 |
| GdAs | 131 |
| GdB2C2 | 140 |
| GdMn2Ge2 | 108 |
| Ge | 212, 213 |
| Ge detector | 286 |
| GeSi alloy semiconductor | 160 |
| Ge-Te-M glass | 183 |
| G-GIXS | 202 |
| glass network | 163 |
| glass transition | 83 |
| globular protein | 256 |
| glutamate dehydrogenase | 252 |
| glycerol | 241 |
| glyco-replica peptide | 244 |
| GMR sensor | 96 |
| goethite | 125 |
| GP zone | 162 |
| granite | 264 |
| granular | 117 |
| grazing incidence | 62, 117 |
| grazing-incidence small-angle scattering | 162 |
| GRIP | 207 |
| GroEL | 250 |
| GUI software | 283 |
| |
| H2S | 9 |
| half-metallic ferromagnet | 189 |
| Halobacterium salinarum | 254 |
| halogen | 92 |
| halophilic ferredoxin | 254 |
| HCl solution | 40 |
| HCT model | 78 |
| HDDR | 203 |
| heavy fermion | 101 |
| heteroepitaxy | 170 |
| HFIP | 239 |
| HfO2 | 72 |
| high photon flux | 275 |
| high pressure | 102, 133, 205, 218, 219, 221, 222 |
| high temperature | 195, 219 |
| histone chaperone | 243 |
| HIV protease | 240 |
| host-guest | 153 |
| humic acid | 164 |
| HY | 20 |
| hydration | 186, 255 |
| hydrodearomatization | 54, 94 |
| hydrodesufurization | 25 |
| hydroformylation | 32 |
| hydrogen absorption | 181 |
| hydrogen termination | 92 |
| hydrogenation | 55 |
| hydrous ringwoodite | 205 |
| hydroxyapatite | 149 |
| |
| icosahedral cluster | 126 |
| ideal mixing | 85 |
| IET model | 78 |
| ilmenite | 221 |
| image information | 261 |
| imaging | 70, 173, 174, 176, 262, 273, 285 |
| imaging plate | 178, 280, 282, 288 |
| imaging type detector | 270 |
| immobilization | 28 |
| In | 66 |
| in situ PES | 103, 104, 105, 106 |
| incommensurate structure | 204 |
| inelastic X-ray scattering | 12 |
| infrared spectra | 120 |
| InGaP | 88 |
| inhibitor complex | 227 |
| initial oxidation | 74 |
| inner shell excitation | 15 |
| inner valence | 8 |
| in-plane XRD | 96 |
| InSb (001) | 76 |
| in-situ XAFS | 17, 25, 54, 94 |
| instrumental function | 208 |
| interface | 50, 59, 267 |
| interference term | 134 |
| interlayer | 62 |
| intermetallic compounds | 108 |
| invertebrate | 249 |
| iodine | 260 |
| ion implantation | 128, 129 |
| ion-exchange | 167 |
| ionic conductor | 143 |
| ionic liquid | 28 |
| |
| Jahn-Teller distortion | 133 |
| |
| Kβ spectra | 287 |
| KBr | 91 |
| Keratin | 266 |
| kinetics | 56 |
| Kratky plot | 256 |
| K-shell photoionization | 258 |
| |
| La0.5Sr1.5MnO4 | 134 |
| La0.63Ti0.92Nb0.08O3 | 195, 206 |
| La0.6Sr0.4MnO3 | 103, 104 |
| La2-2xMn1+2xSrO7 | 136 |
| La2-xSrxNiO4 | 99 |
| LaCo13-xMnx | 126 |
| LaFeO3 | 105 |
| lamellar | 24, 120, 233 |
| LaNi5 | 181 |
| lanthanide | 286, 287 |
| laser heating | 216, 217, 218 |
| laser MBE | 103, 104, 105, 146 |
| lattice distortion | 88 |
| lattice parameters | 206 |
| lattice undulation | 265 |
| layer structure | 199 |
| lectin | 225, 249 |
| Lewis acid | 42 |
| LiCl/Ag(001) | 172 |
| LiF2 | 35 |
| light induced change | 235 |
| liquid crystal | 199 |
| liver | 262 |
| lower mantle | 216, 217 |
| low-temperature synthesis | 175 |
| lymphoblast cell | 246 |
| |
| M.SsoII | 238 |
| macrolattice | 159 |
| magnesiowustite | 217 |
| magnet | 203 |
| magnetic anisotropy | 58 |
| magnetic Compton profile | 117 |
| magnetic depth profile | 270 |
| magnetic domain | 136 |
| magnetic form factor | 98 |
| magnetic multilayer | 165 |
| magnetic thin film | 58 |
| mammalian cell | 242, 258 |
| manganese oxide | 100, 103, 104 |
| manganite | 134 |
| mannose binding | 225 |
| mantle dynamics | 222 |
| MCM-41 | 42, 123, 187 |
| MCRC protein | 214 |
| melt-quench | 203 |
| membrane protein | 248 |
| membrane raft | 232 |
| mesopore | 39 |
| mesoporous Ta2O5 | 194 |
| mesoporous titania | 127 |
| metal cluster | 33 |
| metal diboride | 268 |
| metal-insulator transition | 132 |
| metallic mirror | 63 |
| methionine | 14 |
| Mg-perovskite | 218 |
| micellar | 24 |
| micro image | 260 |
| microangiography | 263 |
| microbeam | 46, 178, 188, 266 |
| microemulsion method | 44 |
| micrometeorites | 210 |
| microphase separation | 159 |
| microscope | 242, 274, 276 |
| microtomography | 285 |
| MIGS (metal-induced gap state) | 172 |
| miscibility | 85 |
| mixed dual-energy | 261 |
| MLD | 114 |
| Mn site | 126 |
| Mn valency | 100 |
| MnCo2O4 | 175 |
| Mn-doped ZnO | 146 |
| MnS | 21 |
| Mo | 16, 20, 39 |
| Mo oxide | 17 |
| model membrane | 232 |
| molecular beam epitaxy | 103, 104, 105, 146, 189, 190 |
| molecular dynamics simulation | 179 |
| molecular imprinting | 30 |
| molecular orientation | 91 |
| molecular penetration | 233 |
| molten globule | 254 |
| molten salt | 35, 179 |
| momentum density | 116 |
| monochromator | 281 |
| monoolein | 241 |
| Monte Carlo method | 56 |
| montmorillonite | 18, 67 |
| morphology | 185 |
| MSGC | 269 |
| multilayer | 275 |
| multilayer grating | 268 |
| multiple scattering | 20 |
| myosin | 236 |
| |
| N2 | 8 |
| N-acetylgalactosamine | 249 |
| nano crystals | 175 |
| nano structure | 117, 118 |
| nano wire | 109 |
| nanocluster | 124 |
| nanomagnet | 13 |
| nanoparticle | 18, 71, 150, 180, 192 |
| nanosheet | 169 |
| nanosolution | 89 |
| nanostructure | 159, 200, 201 |
| nanowire | 50 |
| naphthalene | 2 |
| Nb | 259 |
| NbC | 187 |
| Nd12.5FebalZr0.5B6.2 | 203 |
| NdMn2Ge2 | 108 |
| Ne | 12 |
| near surface damage | 63, 64 |
| NEET | 277 |
| neutron damage | 145 |
| neutron scattering | 164 |
| NEXAFS | 55, 56, 65, 80, 90, 91, 172, 193 |
| NHERF | 245 |
| Ni(111) | 65 |
| Ni/Cu(001) | 60 |
| Ni/TiO2(110) | 93 |
| Ni2P | 25 |
| NiO(100) | 114 |
| NiTiO3 | 221 |
| NO | 57 |
| noble metal | 192 |
| noble metal chalcogenide | 163 |
| notch | 178 |
| NOx | 19 |
| Np | 37 |
| nuclear forward scattering | 154 |
| nuclear resonant scattering | 157, 272 |
| |
| O2 | 1, 10 |
| optical blocking filter | 279 |
| orbital moment | 98 |
| orbital ordering | 98, 130, 132 |
| ordered mesoporous carbon | 33 |
| organic electro-luminescence | 36 |
| organic radical ferromagnet | 142 |
| oxidation state | 264 |
| oxidative response regulation system | 228 |
| oxide thin film | 103, 104, 105 |
| |
| π emission | 268 |
| particle radiotherapy | 261 |
| Pb(In1/2Nb1/2)O3 | 148 |
| PbF2 | 35 |
| Pd | 28, 42 |
| Pd(111) | 95 |
| PdFe | 119 |
| Pd-Pt catalysts | 54, 94 |
| PDZ | 207 |
| peak profile | 208 |
| PEEM | 114, 136 |
| peripheral artery | 263 |
| perovskite | 144, 148, 154, 191, 195, 206, 216, 218 |
| perpendicular anisotropy | 165 |
| perturbation | 236 |
| PES | 49, 53, 68, 69, 71, 72, 73, 75, 76, 81, 86, 92, 100, 111, 115, 177, 284 |
| phase | 52 |
| phase behavior | 32, 247 |
| phase boundary catalyst | 45 |
| phase contrast | 62, 273 |
| phase tomography | 73 |
| phase transition | 4, 35, 48, 102, 133, 137, 143, 144, 148, 206, 215, 217 |
| phason dynamics | 37 |
| phenol synthesis | 9 |
| phosphorus K-edge | 57 |
| photocatalyst | 7, 151 |
| photodegradation | 5 |
| photoionization | 3 |
| photon stimulated ion desorption | 14, 49, 80, 86 |
| plasma | 145 |
| plasma diagnostics | 278 |
| plasma polymers | 197 |
| polyethylene | 158 |
| polymer blends | 158 |
| polymer crystallization | 158 |
| polymeric surface | 83 |
| polymorphism | 182 |
| polyoxymethylene | 120 |
| polystylene | 83 |
| porous hollow capsule | 26 |
| position-sensitive detectors | 269 |
| powder diffraction | 143, 144, 206, 208 |
| Pr0.5Ca0.5MnO3-δ | 100 |
| precipitation | 162 |
| pre-data collection | 283 |
| pre-edge | 122 |
| pressure effect | 142 |
| PrFe4P12 | 110, 135 |
| projection microscopy | 242 |
| propane dehydrogenation | 149 |
| proportional counters | 269 |
| protein crystallography | 207, 211, 214, 224, 225, 226, 227, 228, 229, 230, 243, 244, 245, 248, 249, 280, 281, 283 |
| protein internal structure | 231 |
| protium | 181 |
| proton conductor | 191 |
| Pseudomonas aeruginosa | 248 |
| Pt | 19, 33, 66, 192 |
| Pt colloid | 168 |
| Pt(110) | 55, 57 |
| Pt(111) | 56 |
| Pt/Al2O3 | 168 |
| PTFE | 15 |
| Pt-Fe | 196 |
| PVA stabilizer | 168 |
| pyrope | 222 |
| |
| quadrupolar ordering | 130 |
| quadrupole order | 135 |
| quadrupole transition | 122 |
| quartz mirror | 64 |
| |
| racemization | 226 |
| radiosensitive mutants | 258 |
| radiosensitivity | 258 |
| radiotherapy | 259 |
| radius of gyration | 256 |
| radixin | 245 |
| raft | 234 |
| rare gas dimer | 4 |
| rat | 263 |
| RbBr | 89 |
| RbCl | 179 |
| Re | 29 |
| realtime observation | 173, 176, 274 |
| receptor | 211 |
| reconstructed structure | 47 |
| redox | 16, 149 |
| reduction | 152 |
| relaxor | 148 |
| resonant PES | 97, 108, 110, 111, 112 |
| resonant scattering | 212 |
| resonant X-ray magnetic scattering | 138 |
| resonant X-ray scattering | 130, 132, 133, 134, 135 |
| reverse micelles | 180, 186 |
| Rf | 23 |
| Rh | 30, 31, 32, 40, 150, 192 |
| Rietveld analysis | 144 |
| Ru | 33 |
| RuO2 | 43 |
| rust | 125, 200, 201 |
| rutile | 122 |
| |
| σ emission | 268 |
| S | 22, 38 |
| S/GaAs(001) | 97 |
| satellite diffraction | 204, 209 |
| SAXS | 2, 11, 24, 120, 153, 156, 159, 161, 162, 180, 184, 232, 233, 234, 238, 239, 240, 250, 251, 252, 253, 254, 255, 256, 266 |
| SAXS/WAXS simultaneous measurement | 158, 182, 241 |
| Sc | 67 |
| Schumann-Runge band | 1 |
| sediment | 21 |
| Seebeck coefficient | 111 |
| selenate-Fe complex | 123 |
| self assemble molecule | 166 |
| self assembled monolayer | 169 |
| semicondcutor | 88, 109 |
| semiconductor detector | 145 |
| serine/threonine phosphatase | 227 |
| short-range order | 137 |
| Si | 72, 73 |
| Si 2p | 69 |
| Si(001) | 50, 53 |
| Si(110) | 49 |
| Si(111) | 86, 92 |
| Si(111)-Ag | 48, 78 |
| Si(111)-Ag+Cs | 79 |
| Si(111)-Gd | 109 |
| SiC | 47 |
| signal to background ratio | 288 |
| silicate perovskite | 216 |
| silicide | 69, 87 |
| silk | 188 |
| SIMOX | 84 |
| sintered diamond | 222 |
| SiO2 | 54, 66 |
| SiO2/Si(100) | 74 |
| SiO2:Tb | 128, 129 |
| SiON film | 73, 75 |
| site occupancy | 203 |
| site selection | 27 |
| skeletal muscle | 223, 236, 237 |
| skin | 233 |
| skutterudite | 135 |
| small angle scattering | 157 |
| SmB2C2 | 138 |
| smectic A | 199 |
| smectite | 34 |
| SmS | 102 |
| Sn | 40 |
| Sn/InSb(001) | 76 |
| soft X-ray emission spectroscopy | 36, 62, 111, 118 |
| soft X-ray projection microscope | 242 |
| SOI | 84, 265 |
| soil strata | 264 |
| solar cells | 171 |
| solid solution | 160 |
| solution | 41 |
| sorption | 34 |
| SoxR | 228 |
| spectral distortion | 286 |
| specular reflection | 63, 64 |
| spherulite | 158 |
| sphingomyelin | 232, 247 |
| spin moment | 98 |
| spin ordering | 130 |
| spin reorientation transition | 58, 60, 61, 272 |
| spinel-type MnCo2O4 | 174 |
| spinel-type structure | 175 |
| spin-resolved PES | 97 |
| sputtering | 88 |
| squid | 235 |
| SrTiO3 | 105 |
| SrZr1-XYbXO3-α | 191 |
| SrZrO3 | 144 |
| stained glass | 46 |
| Stark quantum beat | 5 |
| steel | 125, 200, 201, 202 |
| STM | 289 |
| stopped-flow | 250 |
| strain | 88, 96 |
| stratum corneum | 233 |
| Streptomyces | 211 |
| stress distribution | 178 |
| stress measurement | 121 |
| strongly correlated system | 99 |
| sub-oxide | 74 |
| subtilisin family protease | 229 |
| successive stretches | 223 |
| supercritical fluid | 2, 11, 150, 192 |
| superionic conductance | 35 |
| superionic conducting glass | 163 |
| superparamagnetism | 44 |
| surface Brillouin zone | 79 |
| surface composition | 85 |
| surface effect | 162 |
| surface electronic structure | 109 |
| surface EXAFS | 95 |
| surface excess concentration | 51 |
| surface roughness | 63, 64 |
| surface state | 77 |
| surface structure | 93 |
| surface X-ray diffraction | 47, 48 |
| surface X-ray scattering | 64 |
| surfactant | 24, 85 |
| susceptibility | 142 |
| Suzuki coupling reaction | 28 |
| |
| Tb | 128, 129 |
| temperature dependence | 183 |
| tetrahedral amorphous carbon | 198 |
| TFP | 253 |
| thermal oscillation | 127 |
| thermal vibration | 48 |
| thick filament | 236 |
| thin film | 65, 82, 84, 121, 155, 265, 279 |
| thiophene | 53 |
| threshold electron | 8, 9, 10 |
| threshold photoionization | 12 |
| thyroid | 260 |
| Ti oxide | 45 |
| tideland | 21 |
| time-of-flight mass-spectrometer | 80 |
| time-resolved measurement | 156, 161, 199, 237, 282 |
| TiN | 121 |
| Ti-Nb binary oxide | 26 |
| TiNi | 116 |
| TiO/TiC | 82 |
| TiO2 | 122, 127 |
| titania nanosheet | 169 |
| titanosilicates | 167 |
| toroidal photoelectron spectrometer | 284 |
| total reflection | 62, 93 |
| total reflection XAFS | 51, 85, 169 |
| toxic anion | 123 |
| TRAIL | 259 |
| transactinide element | 23 |
| transcription | 243 |
| transformation kinetics | 222 |
| transporter protein | 248 |
| trehalose | 184 |
| triacylglycerol | 182 |
| trimer | 4 |
| tripeptide | 244 |
| troponin | 237 |
| two-photon correlation | 271 |
| |
| U | 41 |
| ULSI | 72, 73, 75 |
| ultrasound | 182 |
| ultrathin film | 95 |
| ultrathin gate oxide | 267 |
| unfolding | 240 |
| urea | 252 |
| USY | 39, 54, 94 |
| |
| V | 27 |
| valence band | 68, 69, 71 |
| valence fluctuation | 101, 102 |
| van Hove singularity | 115 |
| vessel | 262 |
| visual cell | 235 |
| voltammetry | 34 |
| VUV | 1 |
| VUV spectrograph | 278 |
| |
| water | 18 |
| water formation reaction | 56 |
| WAXS | 120, 161, 231 |
| weathering process | 264 |
| weathering steel | 125, 200, 201 |
| Weissenberg camera | 282 |
| Weissenberg photograph | 209 |
| wide wavelength ragne | 281 |
| Wolter mirror | 285 |
| |
| XAFS | 13, 16, 27, 34, 40, 44, 46, 66, 67, 93, 101, 151, 160, 174, 191, 279 |
| XANES | 13, 14, 18, 21, 22, 37, 38, 43, 45, 59, 152, 167, 171, 175, 196, 220, 264 |
| XAS mapping | 289 |
| XeF2/Si (111) | 86 |
| XMCD | 58, 59, 60, 61, 107, 119, 136, 165, 270 |
| XMLD | 136 |
| XPS | 58, 197, 198 |
| X-ray Anomalous Dispersion | 209 |
| X-ray CCD detector | 223, 250, 251, 279 |
| X-ray CT | 260, 261, 273 |
| X-ray diffraction | 215, 220, 223, 235 |
| X-ray emission spectroscopy | 107 |
| X-ray fluorescence | 129, 173, 174, 176, 285, 286, 287, 288 |
| X-ray fluorescence holography | 155 |
| X-ray fluorescence imaging | 46, 274, 275, 276 |
| X-ray magnetic diffraction | 98 |
| X-ray magnetic scattering | 131 |
| X-ray micro-diffraction | 199 |
| X-ray photoelectron diffraction | 57, 81 |
| X-ray reflectivity | 63, 83 |
| X-ray scattering | 164 |
| X-ray standing wave | 50 |
| X-ray topography | 213, 265 |
| X-ray-excited visible luminescence | 128 |
| |
| Y1-xCaxTiO3 | 132 |
| Yb | 94, 152 |
| YB2C2 | 141 |
| YTiO3 | 98 |
| |
| zeolite | 16, 20, 25, 29, 39, 54, 94, 124, 151, 196 |
| zinc-blende type MnAs dots | 106 |
| Zn1-xVxO | 177 |
| ZnO | 146 |
| ZnO surface | 77 |
| ZnO/sapphire | 170 |
| zone plate | 242 |
| Zr | 23 |
| ZrB2 | 268 |
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N], [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]
Photon Factory Activity Report 2002
Copyright © 2003 by High Energy Accelerator Research Organization (KEK)