Structure of Zirconium Complex in HCl Solution for Chemical Characterization of Transactinide Element Rf

Kazuhiko AKIYAMA^{*1}, Kazuaki TSUKADA¹, Hiromitsu HABA², Masato ASAI¹, Tsuyoshi YAITA¹, Atsushi TOYOSHIMA^{1, 3}, Yuichiro NAGAME¹ ¹Japan Atomic Energy Research Institute, Ibaraki 319-1195, Japan ²The Institute of Physical and Chemical Research (RIKEN), Saitama 351-0198, Japan ³Osaka University, Osaka 565-0871, Japan

Introduction

According to the actinide concept, the 5f electron series ends with element 103, lawrencium (Lr), and a 6d transition metal, transactinide, series is predicted to begin with element 104, rutherfordium (Rf). So far, we have studied anion-exchange behavior of Rf together with the lighter homologues Zr and Hf in HCl [1]. The results have clearly shown that the behavior of Rf is quite similar to that of Zr and Hf, indicating that Rf is the member of the group-4 elements. To discuss the anion complex structure of Rf in HCl, the structural information of Zr and Hf is indispensable. In this paper, we report the structure of the Zr complex in 1 M to 11.5 M HCl determined by the EXAFS method.

Experimental

Commercially available $ZrCl_4$ powder was dissolved with 1 to 11.5 M HCl. The concentration of Zr was adjusted to 0.01 M. The sample was sealed in a polyethylene bag and set to the BL27B beam line. The Zr-K edge EXAFS spectra were measured with the fluorescence mode using a 7-element Ge solid-state detector array.

Results and Discussion

The adsorption behavior of Zr on the anion-exchange resin indicated that Zr cation and/or neutral complexes are dominant in HCl solutions up to 7 M. Beyond 7 M, the adsorption rate increases with the HCl concentration and becomes almost 100% at 10 M. In the observed Fourier transformed EXAFS spectra for 1-10 M HCl, the most intense peak appears at the distance corresponding to the Zr-O bond. At > 9 M HCl, this peak broadens with an increase of the HCl concentration due to an increase of the contribution from the Zr-Cl bond. A peak originating from Z=O is observed in 1-5 M, while in 1 and 3 M, an extremely characteristic peak derived from Zr-Zr is observed [2]. Spectral simulations were performed with the FEFF8, and the obtained parameters, the number of neighboring atoms N, the distance to the neighboring atom R (Å) are listed in table 1. The R values for the Zr-O shell are 2.20 - 2.23 Å, and the N are 6 - 7 up to 9 M. Above 10 M, Cl⁻ are substituted for H₂O and /or OH⁻ with an increase of the concentration of HCl, and the Zr-Cl shell with 2.43 Å appears. This structural change is consistent with the tendency of the distribution coefficient (K_d) of Zr on anion-exchange resins.

References

[1] H. Haba et al., J. Nucl. Radiochem. Sci. 3, 143 (2002).

[2] K. Tsukada et al., KEK Activity Report, 28 (2002).

kakiyama@popx.tokai.jaeri.go.jp

atoms and the distance to the heighboring atom, respectively.										
[HC1]	Zr-O		Zr-Cl		Zr=O		ZrZr		ZrO	
(M)	Ν	R	Ν	R	Ν	R	Ν	R	Ν	R
1.0	6	2.21			1	1.63	1	3.58	4	4.95
3.0	6	2.20			0.5	1.63	0.5	3.58		
5.0	6	2.21			0.8	1.63				
8.0	6	2.22								
9.0	7	2.23								
10.0	4	2.21	3	2.43						
11.5			6	2.43						

Table 1. Simulated structural parameters by FEFF8. N and R (Å) are indicating the number of neighboring atoms and the distance to the neighboring atom, respectively.