XAFS analysis on the unusual promoting effects of ceria

Saburo HOSOKAWA, Tomoaki MATSUMOTO, Hiroyoshi KANAI, Seiichiro IMAMURA* Department of Chemistry, Kyoto Institute of Technology, Kyoto 606-8585, Japan

INTRODUCTION

Ceria(CeO₂) is one of characteristic supports which has surface area of more than 60 m² g⁻¹. It easily operates oxidation-reduction cycles. We recently observed that Ru/CeO₂ has revealed an unusual catalysis for the reaction between C₃H₆ and N₂O. A XAFS analysis of Ru(K-edge) has been done to clarify the interaction between Ru and CeO₂.

EXPERIMENTAL

Ce(OH)₃ was precipitated from aqueous Ce(NO₃)₃ with NaOH at pH of about 11. The filtrate while it is wet, was dispersed in deionized water. A known amount of RuCl₃ was added followed by introducing HCHO under stirring at 90 °C for 1 h. Then 3 N-NaOH was added to the mixture until the pH of the solution was about 11. The solid portion was filtered and washed with deionized water followed by drying at 80 °C overnight and calcination at 500 °C for 3 h in air. Two samples were prepared: (1) 18 wt% RuO₂/CeO₂ was reduced with H₂ at 200 °C for 2 h, and (2) this was reoxidized at 300 °C for 1 h. X-ray absorption spectra were obtained with the Beam Line 10B (Ru K-edge) station by a transmission mode.

RESULTS AND DISCUSSION

Fig. 1A shows the normalized Ru K-edge XANES spectra of Ru(0)(metal), Ru(III)(NO₃)₃ and Ru(IV)O₂ as standard samples. As the valence of Ru increases, the energy of Ru K-edge was shifted to higher energy. As shown in Fig. 1B, Ru of the original RuO₂/CeO₂ exists in RuO₂, and Ru on CeO₂ after treated with H₂ is in a modestly reduced state, but not in the zero valence. Ruthenium must be bonded to CeO₂ via Ru-O-Ce. When the reduced Ru/CeO₂ was oxidized in oxygen, all of Ru didn't return to RuO₂/CeO₂; the oxidized and reduced Ru species coexist. Judging from the relationship between valence of Ru and K-edge energy shift in Fig. 1(A), half of Ru is estimated to be oxidized. This means that the

oxidized Ru is highly dispersed on the surface of CeO_2 . The still reduced Ru species are in the bulk.

The synergistic effects of oxidation–reduction couples of Ru species and oxygen release-storage properties of CeO_2 showed an unusual reaction between C_3H_6 and N_2O to give C_2H_4 .

Fig. 1 Normalized XANES spectra of Ru (K edge). A: standard samples, B: 18wt% Ru/CeO₂.

imamura@ipc.kit.ac.jp