Adsorption of NO on $\operatorname{Pt}(110)$: X-ray photoelectron diffraction study

Toru SHIMADA, Hiroshi KONDOH, Kenta AMEMIYA, Ikuyo NAKAI Masanari NAGASAKA and Toshiaki OHTA*
Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan

Introduction

The adsorption of NO on Pt surfaces has attracted considerable attention due to its importance in catalytic processes. The clean surface of $\operatorname{Pt}(110)$ undergoes a (2×1) missing row reconstruction, in which every second [1 10] row of surface Pt atoms is removed. NO adsorption on this surface has been experimentally and theoretically studied. Only one peak is observed in infrared reflectionabsorption spectroscopy (IRAS). This peak was assigned to NO molecules on the atop sites [1]. For the atop adsorption of NO, formation of a polymeric (NO) ${ }_{x}$ chain structure was proposed by the previous density functional theory calculations [2]. In the present work, the structure of NO on $\operatorname{Pt}(110)$ has been investigated using a scannedangle N1s x-ray photoelectron diffraction (XPD).

Experimental

The experiments were conducted at the bendingmagnet station Beamline 7A. The sample was prepared by exposing a clean $\operatorname{Pt}(110)$ surface to gaseous NO at a sample temperature of 180 K to the saturation. The saturated surface showed (2 x 1) LEED pattern. Scannedangle XPD curves were measured as a function of polar emission angle along the two major azimuths [1 $\overline{1} 0$] and [001]. The wave number of the photoelectron used here was $10.7 \AA^{-1}$, where photoelectron diffraction is dominated by the forward scattering by the oxygen atoms. The molecular axis orientation was determined by Rfactor analyses. The simulations were performed using the multiple-scattering calculation of diffraction (MSCD) package developed by Chen and van Hove [3].

Results and discussion

Fig. 1 shows the XPD data for the [1 $\overline{1} 0$] azimuth (up) and [001] azimuth (bottom), respectively. The black lines show the results of experiments and the red lines show the results of multiple-scattering simulations for the optimized geometry. Each N 1s intensity was normalized by the corresponding O 1s intensity to avoid any angular dependence not directly related to the molecular axis orientation. The structural model was optimized under assumption of NO molecule adsorbed not only on the close-packed [$1 \overline{1} 0$] rows but also on the long-bridge sites between the rows, because the saturation coverage estimated by XPS is approximately 1.5 times with respect to the close-packed [1 $\overline{1} 0]$ row. In the previous IRAS study [1] no peak associated with NO at the long-bridge site was detected, probably due to the effective screening
of the dynamic dipole situated at the lower level. Fig. 2 shows a schematic illustration of the best-fit model. The present result gives no evidence for the formation of $(\mathrm{NO})_{\mathrm{x}}$ polymeric chain on the close-packed Pt rows. NO molecules adsorbed on the close-packed rows occupy the atop site, tilting only by $14 \pm 2^{\circ}$ from the surface normal towards $40 \pm 20^{\circ}$ from the [$1 \overline{1} 0$] azimuth.

Fig. 1. Comparison of experimental (black) and bestfit simulated (red) scanned-angle XPD curves for the $1.5 \mathrm{NO} /(2 \mathrm{x} 1)-\mathrm{Pt}(110)$ surface.

Fig. 2 Schematic view of the best-fit adsorption geometry for the $1.5 \mathrm{NO} /(2 \times 1)-\operatorname{Pt}(110)$ surface.

References

[1] W. A. Brown et al., J. Phys. Chem. B 102, 5303 (1998).
[2] Q. Ge et al., J. Chem. Phys. 110, 12082 (1999).
[3] Y. Chen et al., MSCD package, Lawrence Berkeley National Laboratory (1998)

* ohta@chem.s.u-tokyo.ac.jp

