Analysis of surface X-ray scattering from synthetic quartz mirror

Mari MIZUSAWA, Krassimir STOEV and Kenji SAKURAI* National Institute for Materials Science, Sengen, Tsukuba, Ibaraki 305-0047, Japan

Introduction

It is important to evaluate the nm-scale structure of large-area engineering surfaces, especially when these are prepared for optical applications [1]. Surface X-ray scattering is an extremely promising method for this purpose $[2,3]$. The present report describes the quantitative determination of the surface morphologies for synthetic quartz mirror with different finishes.

Experimental

Measured samples are synthetic quartz mirror (25 mmx 25 mmx 5 mm) with optically flat surfaces of different quality, "20-2" (certified flatness $\lambda / 20$, $\lambda=632.8 \mathrm{~nm})$, " $10-5$ " $(\lambda / 10)$, "4-5" $(\lambda / 4)$ and " $1-3$ " (λ), which are commercially available from SIGMA KOKI Co., Ltd. X-ray scattering measurements were carried out with 16.0 keV X-rays. The beam size was $0.05 \times 1.0 \mathrm{~mm}$.

Results and Discussion

Fig. 1 shows experimental results of specular and nonspecular scattering for samples, "20-2" and " $1-3$ ". The maximum reflectivity below the critical angle, around 1.9 mrad, was 93.6% and 81.8%, respectively. No oscillating structures were observed in the whole specular reflectivity curve, indicating that significant surface layers do not exist. Non-specular scattering, as shown in the inset, exhibits Yoneda peaks at around 1.8 mrad and 15.7 mrad . Those features of the data were more or less common for all the samples.

During previous studies [3], it was found that the intensity ratio of the specular and non-specular scattering is strongly correlated to the surface morphology. In the present case, the intensity at Yoneda peak (1.8 mrad) is $20.5 \%, 14.2 \%, 15.2 \%$, and 11.8% to the specular scattering at 8.75 mrad , for " $1-3$ ", " $4-5$ ", " $10-5$ " and " 20 2 ", respectively. One can see that the order agrees well with that of flatness as certified by the laser-light method.

The data were analyzed based on the self-affine surface model [2], of which the height-to-height correlation function for the distance ρ is given as $\mathrm{C}(\rho)=\sigma^{2} \exp [-$ $\left.(\rho / \xi)^{2 h}\right]$, where σ, ξ and h are the surface roughness, the correlation length in horizontal directions, and Hurst parameter, respectively. In the present study, simultaneous fitting has been attempted for specular and

Table 1 Summary of the curve fitting.

	Hurst Parameter	Correlation Length $[\mathrm{nm}]$	Roughness $[\mathrm{nm}]$	Density Factor
$1-3$	0.135	132	1.36	1.025
$4-5$	0.215	190	1.27	1.013
$10-5$	0.235	263	1.30	1.048
$20-2$	0.203	320	1.28	1.006

non-specular (rocking and detector scans) data. The results are summarized in Table 1. The rms roughness σ was different, but quite close for the four samples, around 1.3 nm . This is not so surprising considering that their specular reflectivity did not show such big differences even in the higher-angle region ($7 \sim 14 \mathrm{mrad}$). On the other hand, ξ and h are quite different. One can see that density factor also exhibits differences. It has been found that "20-2" is quite normal and has a moderate surface, while " $1-3$ " has an extraordinarily jagged surface. The authors would like to thank Prof. S. Kishimoto for his assistance during the experiment.

References

[1] M.Wormington, I.Pape, T.P.A.Hase, B.K.Tanner and D.K.Bowen, Phil. Mag. Lett., 74, 211 (1996).
[2] K.Stoev and K.Sakurai, Spectrochim. Acta, B54, 41 (1999).
[3] H.Eba and K.Sakurai, Photon Factory Activity Report 1999 \#17, 51 (2000).
*sakurai@yuhgiri.nims.go.jp

Fig. 1 Experimental results of specular and non-specular (inset, rocking scan at 17.5 mrad fixed scattering angle) reflections for the samples, 20-2 and 1-3. Fitted curves are shown as solid lines. For the rocking scan, the calculation only considers the non-specular portion, while the experimental data include specular reflection.

