9A, 7C/2001G143

Structural determination of metal cations in interlayer space of inorganic clay materials by K-edge XAFS

Kiyotomi Kaneda

Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

Introduction

Montmorillonites of smectite clays are composed of negatively charged two-dimensional silicate layer and an interlayer with cationic species[1]. Based on their large cation-exchange ability, various polyvalent metal species could be introduced into the interlayer. We have already explored a unique structure of the metal species within the interlayer that acted as highly efficient solid catalysts for a variety of environmentally friendly organic synthesis[2]. We also found an outstanding catalysis of scandium cations immobilized in the montmorillonite interlayer (Sc³+-mont) for the Michael reaction under solvent-free conditions[3]. In this report, the local structure of the Sc³+-mont catalyst was determined by Sc K-edge XAFS.

Experimentals

The Sc³⁺-mont was prepared by stirring the Na⁺-mont in an aqueous solution of Sc(OTf)₃ (OTf: trifluoromethanesulfonate). The obtained solid was washed with deionized water, and then dried at 110 °C. X-ray absorption spectra were measured in a transmission mode at the EXAFS facilities of KEK-PF, Tsukuba. Details of data analysis are referred to the reported procedure[4].

Results and Discussion

The elemental analysis showed that any OTf groups did not exist in the Sc³⁺-mont. Retention of the layered structure, with a basal spacing of 3.6 Å, was verified by XRD measurements, and its XPS spectra revealed a formation of trivalent Sc species.

As depicted in Figure-a, in Fourier-transform (FT) of k^3 -weighted Sc K-edge EXAFS of the Sc₂O₃, the broad peak due to Sc-Sc and Sc-O shells in the second coordination sphere was observed at around 2.8 Å. On the other hand, for the Sc³⁺-mont samples, the lack of this peak showed monomeric Sc species in the interlayer of mont. This situation of Sc³⁺ species is sharply contrast to the Fe³⁺ cations in the interlayer where the Fe ions are linked by a M-O-M moiety to form a one-dimensional structure[2].

The peak at 1.7 Å was assignable to an Sc-O shell and the results of curve-fitting analysis for the Sc^{3+} -mont were listed in Table; the interatomic distance (R) and the coordination number (C.N.) were 2.13 Å and 6.0, respectively. The distance between Sc and oxygen atoms is close to that found in hexa-coordinated scandium aqua complexes. Conclusively, a monomeric aqua Sc ion is generated with the interlayer of the montmorillonite.

The Sc^{3+} -mont acted as heterogeneous and recyclable catalyst in the Michael reaction of various 1,3-dicarbonyl compounds with enones[3]. Correspondingly, stability of the $\mathrm{Sc}(\mathrm{H}_2\mathrm{O})_6$ species in the recovered Sc^{3+} -mont catalyst was straightforwardly established by XAFS measurement, as described in Figure-c and Table.

The present preparation method using the cation-exchange ability of mont can provide a powerful protocol to stabilize an catalytically active metal species enwrapped within the interlayer as a macrocounteranion.

Figure: Fourier-transforms of k^3 -weighted Sc K-edge EXAFS of (a) Sc₂O₃, (b) fresh Sc³⁺-mont, and (c) recovered Sc³⁺-mont catalyst. Phase shift was not corrected.

Table: Curve-fitting analysis of Sc-O shell for

SC -mont catalysts			
Sample	$R (Å)^a$	$C.N.^{b}$	$\Delta \sigma (\mathring{A}^2)^c$
Fresh	2.13	6.0	0.0019
Recovered	2.13	6.1	0.0014

^aInteratomic distance. ^bCoordination number. ^cDifference between Debye-Waller factor of the Sc³⁺-mont and that of the reference sample.

References

- [1] T. J. Pinnavaia, Science 220, 365 (1983).
- [2] K. Kaneda et al., Green. Chem. 2, 157 (2000); Chem. Commun. 690 (2002).
- [3] K. Kaneda et al., J. Am. Chem. Soc. submitted.
- [4] T. Tanaka et al., JCS, Farad. Trans. 84, 2987 (1988).

^{*} kaneda@cheng.es.osaka-u.ac.jp