Structural determination of metal cations in interlayer space of inorganic clay materials by K-edge XAFS

Kiyotomi Kaneda
Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

Introduction

Montmorillonites of smectite clays are composed of negatively charged two-dimensional silicate layer and an interlayer with cationic species[1]. Based on their large cation-exchange ability, various polyvalent metal species could be introduced into the interlayer. We have already explored a unique structure of the metal species within the interlayer that acted as highly efficient solid catalysts for a variety of environmentally friendly organic synthesis[2]. We also found an outstanding catalysis of scandium cations immobilized in the montmorillonite interlayer (Sc^{3+}-mont) for the Michael reaction under solvent-free conditions[3]. In this report, the local structure of the Sc^{3+}-mont catalyst was determined by Sc K-edge XAFS.

Experimentals

The Sc^{3+}-mont was prepared by stirring the Na^{+}-mont in an aqueous solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ (OTf: trifluoromethanesulfonate). The obtained solid was washed with deionized water, and then dried at $110{ }^{\circ} \mathrm{C}$. X-ray absorption spectra were measured in a transmission mode at the EXAFS facilities of KEK-PF, Tsukuba. Details of data analysis are refered to the reported procedure[4].

Results and Discussion

The elemental analysis showed that any OTf groups did not exist in the Sc^{3+}-mont. Retention of the layered structure, with a basal spacing of $3.6 \AA$, was verified by XRD measurements, and its XPS spectra revealed a formation of trivalent Sc species.
As depicted in Figure-a, in Fourier-transform (FT) of k^{3} weighted Sc K-edge EXAFS of the $\mathrm{Sc}_{2} \mathrm{O}_{3}$, the broad peak due to $\mathrm{Sc}-\mathrm{Sc}$ and $\mathrm{Sc}-\mathrm{O}$ shells in the second coordination sphere was observed at around $2.8 \AA$. On the other hand, for the Sc^{3+}-mont samples, the lack of this peak showed monomeric Sc species in the interlayer of mont. This situation of Sc^{3+} species is sharply contrast to the Fe^{3+} cations in the interlayer where the Fe ions are linked by a M-O-M moiety to form a one-dimensional structure[2].

The peak at $1.7 \AA$ was assignable to an Sc-O shell and the results of curve-fitting analysis for the Sc^{3+}-mont were listed in Table; the interatomic distance (R) and the coordination number (C.N.) were $2.13 \AA$ and 6.0 , respectively. The distance between Sc and oxygen atoms is close to that found in hexa-coordinated scandium aqua complexes. Conclusively, a monomeric aqua Sc ion is generated with the interlayer of the montmorillonite.

The Sc^{3+}-mont acted as heterogeneous and recyclable catalyst in the Michael reaction of various 1,3-dicarbonyl compounds with enones[3]. Correspondingly, stability of the $\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ species in the recovered Sc^{3+}-mont catalyst was straightforwardly established by XAFS measurement, as described in Figure-c and Table.

The present preparation method using the cationexchange ability of mont can provide a powerful protocol to stabilize an catalytically active metal species enwrapped within the interlayer as a macrocounteranion.

Figure: Fourier-transforms of k^{3}-weighted Sc K-edge EXAFS of (a) $\mathrm{Sc}_{2} \mathrm{O}_{3}$, (b) fresh Sc^{3+}-mont, and (c) recovered Sc^{3+}-mont catalyst. Phase shift was not corrected.

Table: Curve-fitting analysis of $\mathrm{Sc}-\mathrm{O}$ shell for
Sc^{3+}-mont catalysts

Sample	$R(\AA)^{\mathrm{a}}$	C.N. $^{\mathrm{b}}$	$\Delta \sigma\left(\AA^{2}\right)^{\mathrm{c}}$
Fresh	2.13	6.0	0.0019
Recovered	2.13	6.1	0.0014

${ }^{\mathrm{a}}$ Interatomic distance. ${ }^{\mathrm{b}}$ Coordination number. ${ }^{\mathrm{c}}$ Difference between Debye-Waller factor of the Sc^{3+}-mont and that of the reference sample.

References

[1] T. J. Pinnavaia, Science 220, 365 (1983).
[2] K. Kaneda et al., Green. Chem. 2, 157 (2000); Chem. Commun. 690 (2002).
[3] K. Kaneda et al., J. Am. Chem. Soc. submitted.
[4] T. Tanaka et al., JCS, Farad. Trans. 84, 2987 (1988).

* kaneda@cheng.es.osaka-u.ac.jp

