Band Offsets of Si Oxynitride Thin Films Determined by Photoemission Spectroscopy

S. Toyoda¹, J. Okabayashi¹, H. Kumigashira¹, M. Oshima¹, K. Ono², M. Niwa³, K. Usuda³, and N. Hirashita³
¹The University of Tokyo, Bunkyo-ku, Tokyo 113-3656, Japan ²KEK-PF, Tsukuba, Ibaraki 350-0801, Japan ³STARC, Kohoku-ku, Kanagawa 222-0033, Japan

Introduction

SiON thin films have a high potential for gate insulators in the field of ULSI device technology due to the protection from the penetration of boron atoms, and the reduction of the gate leakage current.¹⁻⁴ We report on the determination of the energy-band diagram in SiON/Si hybrid systems, which are utilized in the device process technology. The valence-band offsets have been evaluated using the following two methods; (1) the extrapolation method, where valence-band maximum (VBM) is defined by the intersection between the slope and the background above the Fermi level, ⁵ and (2) the inflection point method, which assigns the inflection point as VBM. ⁶ The extrapolation method, however, estimates the value of the band diagram roughly and the inflection point method neglects the contribution from the Si substrate. Therefore, we have developed the "subtraction method" and successfully clarified the precise energy-band offsets depending on nitrogen concentration.

Experiment

Three SiON films were prepared by NO or NH_3 gastreatment on thermal SiO₂ films. The growth method and the properties of SiON films are listed in Table(1).

Table	1٠	The	nronerties	of	SION	filme
rable	11	Ine	brobernes	01	SION	mms

ruore in the properties of brott innib							
Sample	Methods	T _{ox}	N conc.				
No. 1	NO	1.95 nm	$1 \ge 10^{15} \text{ cm}^{-2}$				
No. 2	$NO + NH_3$	2.65 nm	$3 \times 10^{15} \text{ cm}^{-2}$				
No. 3	NH_3	2.95 nm	$5 \text{ x } 10^{15} \text{ cm}^{-2}$				
SiO ₂		1.94 nm					

Photoemission spectroscopy measurements using synchrotron radiation were carried out at the beam line BL-2C of the Photon Factory in High-Energy Accelerator Organization (KEK), which is equipped with a high performance photoelectron analyzer (SCIENTA SES100).

Result and Discussion

Figure 1(a) shows the valence-band spectra of SiON films with different nitrogen-concentrations normalized by H-terminated Si(001) spectrum. The dominant peaks around \sim 7 eV below the VBM are attributed to O 2*p* bands from SiO₂ and SiON films. By subtracting the Si valence band spectrum from these of SiON spectra,

nominal SiON contributions have been deduced as shown in Fig. 1(b). One can see two intersections, which we refer to ΔE_v^{1} and ΔE_v^{2} . With increasing the nitrogen-concentration, the positions of ΔE_v^{2} shift toward VBM. On the other hand, ΔE_v^{1} is fixed at 4.4 eV below VBM in all spectra, which comes from the SiO₂ valence band offsets. ΔE_v^{2} for the 5 x 10¹⁵ cm⁻² sample is about 2.0 eV, which is close to the valence-band offset of Si₃N₄. Two different tendencies in the peak shifts of ΔE_v^{1} and ΔE_v^{2} suggest that the SiON film consist mostly of the SiO₂ chemical states as shown in the fixed ΔE_v^{1} . Considering the shift of ΔE_v^{2} depending on nitrogen-concentration, the size of SiON domains which are separated from SiO₂ may increase.

Fig. 1: (a) Valence band spectra of SiO_2 and SiON with different nitrogen-concentration. The spectrum of H-terminated Si(001) is also shown at the bottom. (b) Valence band spectra where Si contribution is subtracted. The spectrum for SiO_2 is also shown at the bottom.

References

[1] Z.H. Lu, S.P. Tay, R. Cao *et al.*, Appl. Phys. Lett. **67** 2836 (1995).

[2] H. C. Lu, E. P. Gusev, T. Gustafsson *et al.*, Appl. Phys. Lett. **69** 2713 (1996).

[3] D. Bouvet, P. A. Clivaz, M. Dutoit *et al.*, Appl. Phys. **79** 7114 (1996).

[4] J. R. Shallenberger, D. A. Cole, and S.W. Noval, J. Vac. Sci. Technol. A17 1086 (1999).

[5] G. Margaritondo, A. D. Katnani, N. G. Stoffel *et al.*, Solid State Commun. **43** 163 (1982).

[6] J. W. Keister, J. E. Rowe, J. J. Kolodziej *et al.*, J. Vac. Sci. Technol. B **17** 1831 (1999).