Valence band of the surface of Si(111)−√21×√21−(Ag+Cs) formed at RT

Canhua LIU1*, Iwao MATSUDA1, Taichi OKUDA2, Toyohiko KINOSHITA2, Shuji HASEGAWA1
1Department of Physics, School of Science, Univ. of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, 2Synchrotron Radiation Lab., Inst. of Solid State Phys., Univ. of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581

Introduction

Evaporating Cs atoms onto the Si(111)−√3×√3−Ag surface at room temperature (RT) has been found to form a √21×√21 surface superstructure[1], which can be also found during evaporation of Au or Ag atoms onto the same substrate surface. These √21×√21 surfaces seem to have some common characteristics including high two-dimensional electrical conductivity[1]. Especially in the cases of Au and Ag induced √21×√21 surface, they are considered to have very similar atomic arrangements and electronic structures according to STM observations and PES measurements, and both of their high two-dimensional electrical conductivity is thought to due to surface-state bands[2].

For the Cs induced √21×√21 surface, here for the first time we investigated the valence bands of the √21−Cs surface, finding that there are also surface-state bands crossing the Fermi-Energy. We think the high two-dimensional electrical conductivity of √21−Cs surface also results from these surface-state bands just like those of √21−Ag and √21−Au surfaces. But the dispersion of the surface-state bands of the √21−Cs surface is quite different from those of the latter two.

Experiment

The substrate was a P-doped n-type Si(111) wafer with resistivity of 2-15 Ω·cm at RT, and its typical dimensions were 10×3×0.5 mm³. Experiment was conducted in the ultrahigh vacuum (UHV) chamber set on BL-18A at Photon Factory of KEK.

A clear 7×7 surface was produced by flashing the sample several times at 1200°C. Then the Si(111)−√3×√3−Ag structure was formed at a substrate temperature of ∼520 °C by depositing about one monolayer of Ag atoms. Finally, the wafer was cooled to RT and Cs atoms were evaporated from a thoroughly out-gassed commercial dispenser (SAES Getters Inc.) to the Si(111)−√3×√3−Ag surface until a √21×√21 LEED pattern emerged. The formed √21−Cs surface was cooled to about 120K for extending its lifetime and for ARPES measurement.

Results and Discussion

Figure 1(a) contains the ARPES spectra of the √21−Cs surface, and Fig. 1(b) is its grey-scale band-dispersion diagram constructed from the second-derivatives of the spectra in (a) by using the measured work function of 2.53eV. It is very clear that there are two surface state bands near and crossing the Fermi-level; S1 is almost at Fermi energy with little dispersion while S2 is dispersing upwards crossing the Fermi level. The bottom of S2 band is located in between the Γ and \overline{M} points in the second $\sqrt{3}\times \sqrt{3}$-surface Brillouin zone.

From the dispersion of such valence bands of the √21−Cs surface, it can be concluded that this is a metallic surface. The reported high surface conduction of the √21−Cs surface is guessed to be due to the dispersing valence bands shown in the Fig. 1. But by comparing with the valence bands of the surfaces of √21−Ag and √21−Au [1,3], it is found that they are quite different, which indicates they belong to two different types of √21×√21 surface superstructure.

References

* liu@surface.phys.s.u-tokyo.ac.jp