In-situ Mn 2*p*-3*d* resonant photoemission study on La_{0.6}Sr_{0.4}MnO₃ epitaxial thin films grown by laser MBE

Kouji HORIBA¹, Hiroyuki OHGUCHI¹, Daisuke KOBAYASHI¹, Hiroshi KUMIGASHIRA^{1*}, Masaharu OSHIMA¹, Naoyuki NAKAGAWA², Mikk LIPPMAA², Kanta ONO³, Masashi KAWASAKI⁴, and Hideomi KOINUMA⁵

¹ Department of Applied Chemistry, The University of Tokyo, Tokyo 113-8656, Japan

² Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan

³ Institute of Materials Structure Science, KEK-PF, 1-1 Oho, Tsukuba 305-0801, Japan

⁴ Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

⁵ Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan

Introduction

Hole-doped perovskite manganese oxides have attracted considerable attention because of their properties.1 interesting magnetic and electronic Photoemission spectroscopy (PES) has long played a central role in the measurement of the electronic properties of manganese oxides.²⁻⁶ However, recently questions arose as to reliability of PES spectra on addressing the bulk electronic structure of manganese oxides'; the PES spectra of manganese oxides, especially the density of states (DOS) at the Fermi level (E_F) , strongly depend on the surface preparation procedure as well as the experimental conditions.²⁻⁶ Since PES is a quite surface sensitive technique owing to short photoelectron mean free paths, this may originate from different surface electronic structure induced by different surface preparations as well as different surface sensitivity in different experimental conditions.^{8,9} Thus, in order to understand the bulk electronic structure, it is indispensable to perform the PES measurements on welldefined surfaces of manganese oxides. In this study, we report an in-situ resonant PES study on well-ordered surfaces of La_{0.6}Sr_{0.4}MnO₃ (LSMO) thin films grown by laser molecular beam epitaxy (laser MBE).

Experimental

The LSMO thin films were fabricated in a laser MBE chamber connected to a synchrotron radiation photoemission system at BL-2C of the Photon Factory.¹⁰ LSMO thin films were deposited on the TiO₂-terminated SrTiO₃ (001) substrates at 950 °C at an oxygen pressure of 1 x 10^{-4} Torr.¹¹ After cooling down below 100 °C, the films were transferred into the photoemission chamber under vacuum of 10^{-10} Torr. The PES spectra were taken with total energy resolution at the photon energy of 600 eV was about 150 meV.

Results and Discussion

Figure 1 shows the high-resolution resonant PES spectra in the near- E_F region at low temperature. In Fig. 1, we find that the spectrum exhibits clear evidence of a Fermi cutoff, which is consistent with the metallic ground

states of LSMO thin films. The existence of a Fermi edge is more clearly seen by comparison with the spectrum of gold. This result is a sharp contrast with so far reported PES results²⁻⁶ where the spectral intensity near E_F is considerably suppressed. The suppression may originate from surface disorder induced by conventional surface preparation procedures (scraping or fracturing) in the previous PES measurements²⁻⁶, since the metallic state of LSMO results from the coherence of doped states which may be deeply disturbed by the disorder. These results strongly suggest the importance of *in-situ* PES measurement on a well-ordered surface of transition metal oxides for revealing their intrinsic electronic structure.

Fig. 1: Resonant PES spectra of LSMO thin films.

References

- M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70 (1998) 1039, and references there in.
- [2] A. Chainani et al., Phys. Rev. B 47 (1993) 15397.
- [3] T. Saitoh *et al.*, Phys. Rev. B **51** (1995) 13942.
- [4] D. D. Sarma et al., Phys. Rev. B 53 (1996) 6873.
- [5] T. Saitoh et al., Phys. Rev. B 56 (1997) 8836.
- [6] J. -H. Park et al., Nature (London) 392 (1998) 794.
- [7] R. Joynt et al., Science 284 (1999) 777.
- [8] A. Sekiyama et al., Nature (London) 403 (2000) 396.
- [9] K. Maiti et al., Phys. Rev. Lett. 80 (1998) 2885.
- [10] K. Horiba et al., Rev. Mod. Instr., in press.
- [11] M. Kawasaki et al., Science 266 (1994) 1540.
- * kumigashira@sr.t.u-tokyo.ac.jp