In situ Photoemission Characterization of LaFeO₃ Thin Films Grown on SrTiO₃ Substrates by Laser Molecular Beam Epitaxy

Daisuke KOBAYASHI¹, Hiroshi KUMIGASHIRA¹*, Masaharu OSHIMA¹, Tsuyoshi OHNISHI², Mikk LIPPMAA², Kanta ONO³, Masashi KAWASAKI⁴, and Hideomi KOINUMA⁵

¹ Department of Applied Chemistry, The University of Tokyo, Tokyo 113-8656, Japan
² Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan
³ Institute of Materials Structure Science, KEK-PF, 1-1 Hino, Tsukuba 305-0801, Japan
⁴ Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
⁵ Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan

Introduction

Epitaxial multilayered heterostructures based on perovskite oxides have a great potential for future electronic device applications¹. For realizing these devices with desired properties, it is important to control the interface and surface structure on an atomic level. In particular, it is indispensable to evaluate the diffusion or segregation of constituent atoms across the heterointerface since the physical properties of a perovskite transition metal oxide is very sensitive to its composition. In this study, we report in-situ photoemission characterization of LaFeO₃ thin films grown on wet-etched TiO₂-terminated SrTiO₃ (001) substrate² with different growth conditions and film thicknesses in order to investigate the segregation or diffusion of Sr atoms at the LaFeO₃/SrTiO₃ heterointerface.

Experimental

LaFeO₃ thin films with thickness of 20 ~ 100 ML (8 ~ 40 nm) were fabricated in a laser molecular beam epitaxy chamber connected to a synchrotron radiation photoemission system at BL-2C of the Photon Factory.³ The LaFeO₃ thin films were deposited on the TiO₂-terminated SrTiO₃ (001) substrate at 700°C or 950°C at an oxygen pressure of 1×10⁻⁴Torr.² During LaFeO₃ thin films growth, we monitored the intensity of specular spot in reflective high energy electron diffraction (RHEED) pattern by in-situ. According to the in-situ RHEED monitoring, the growth mode of LaFeO₃ thin film at low temperature (700°C) was layer-by-layer growth mode, while step-flow growth mode at high temperature (950°C). The fabricated LaFeO₃ thin films were moved into the photoemission chamber under ultra high vacuum of 1×10⁻¹⁰Torr. The PES spectra were taken at room temperature and total energy resolution at the photon energy of 600eV is about 200meV.

Results and Discussion

Figure 1 shows the photoemission spectra of LaFeO₃ thin films grown with various conditions. We observed a clear Sr 3d signal indicative of existence of substantial Sr atoms on the surface of LaFeO₃ film with thickness of 20 ML grown at high temperature. The high-resolution spectra of Sr 3d core level mainly consist of two components: a sharp peak at binding energy of 132.8eV and relatively broad one with an energy separation of 1.1eV. Detailed analysis of the spectra revealed that the sharp component may originate from the local formation of La₁₋ₓSrₓFeO₃, while the broad one emerge as a results of Sr segregation and subsequent recrystallization as Sr oxides (SrOₓ) on the surface. The intensity of the Sr 3d peak gradually decreases with increasing the film thickness and nearly disappears at 100 ML thickness. In constant, we do not observe any indication of existence of the extra Sr atoms on the surface for LaFeO₃ thin films grown at 700°C (layer-by-layer growth). Furthermore, even after annealing of the LaFeO₃ films at 950°C, the Sr atoms were not segregated on LaFeO₃ film surface, suggesting that Sr segregation depend on the growth mode of LaFeO₃ films.

References


* kumigashira@sr.t.u-tokyo.ac.jp