Resonant x-ray scattering study of EA₂CuCl₄ under high pressure

Kenji Ohwada¹, Kenji Ishii¹, Tosyiya Inami¹, Youichi Murakami² ¹Japan Atomic Energy Research Institute, 1-1-1 Koto, Mikazuki, Sayo, Hyogo 679-5148, Japan ²Department of Physics, Tohoku University, Sendai, Miyagi, 980-8578, Japan

Introduction

Layer compound $(C_2H_5NH_3)_2CuCl_4$ (EA₂CuCl₄) has an antiferro-distortive (AFD; Jahn-Teller (JT) distortion) arrangement in *ab*-plane (intra-layer) where the Cu²⁺ $(3d^9)$ 3d-holes order as $-d_{x2-z2}-d_{y2-z2}-d_{x2-z2}-d_{y2-z}-d_{y$

Experimental

To clarify these problems, we planned to study the JT suppression under high pressure. We performed resonant x-ray scattering (RXS) experiment under high pressure at BL-4C. Resonant signal come from the JTD has been clearly observed at ambient pressure. Pressure was generated in a DAC using 1:1 mixture of n-pentane:i-pentane pressure transmitting media which guarantees the hydrostaticity up to 6 GPa.

Results and Discussion

Figure 1 shows the pressure dependence of 020 peak profiles below and above the transition pressure $P_c = 4$ GPa. Peak split along the *c*-axis, which is a direct evidence of the phase transition, has been clearly observed. We then measured the pressure dependence of the intensity at resonant peak 010 (Ei = 8.98 keV) as shown in Fig. 2. The observed intensity locates in the hatched area and shows no drastic reduction as the pressure increases as expected from the Rietveld analysis under high pressure[2]. We have no idea, why the intensity shows no large reduction below Pc, however, the intensity wiped out above Pc within present detection limit > 10⁻³.

Fig. 1: 020 peak profiles before and after the phase transition 4 GPa. Peak split takes place along the c-axis.

Fig. 2: Pressure dependence of the normalized peak intensity 010/020. Gray region means the detection limit. The intensity wiped out above Pc confirmed at 4.4(A) and 5.1(B) GPa.

References

[1] Y. Moritomo *et al.* J. Chem. Phys. **101**(3) (1994) 1763.

[2] K. Ohwada et al. SPring-8 User Experiment Report (2002B).