Cross-over of magnetic and quadrupolar order in Dy_{0.8}Gd_{0.2}B₂C₂

Takeshi MATSUMURA^{*1}, Daisuke OKUYAMA¹, Hironori NAKAO¹, Youichi MURAKAMI¹ Yusuke WAKABAYASHI², Hiroshi SAWA², Kazuma HIROTA¹ Kentaro INDOH³, Masato SAKATA³, Hideya ONODERA³ ¹Department of Physics, Tohoku University, Sendai 980-8578, Japan ²KEK-PF, Tsukuba, Ibaraki 305-0801, Japan ³Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

Introduction

 DyB_2C_2 undergoes antiferroquadrupolar(AFQ) order below $T_Q=25$ K and antiferromagnetic(AFM) order below $T_N=15$ K. Resonant x-ray scattering experiments successfully observed the superlattice reflections corresponding to the AFQ order, and the structure of the quadrupolar moments below T_Q was determined[1,2]. In the course of studies of the AFQ orders, an unusual phase called the phase IV, which appears when T_N crosses over T_Q , as observed in $Ce_xLa_{1-x}B_6$ and HoB_2C_2 , has been attracting interests. Recently, Onodera has started to investigate the $Dy_{1-x}Gd_xB_2C_2$ system, where the Dy ions are substituted with Gd which has only spin moment, and has discovered the cross-over of T_N and $T_Q[3]$.

However, the signature of T_N is so vague. Specific heat only shows a broad anomaly around 19 K, which they claims to be T_N , while at 17 K there appears a sharp anomaly which they attributes to the AFQ order. The purpose of this experiment is to clarify the anomaly at 19 K and identify the phase below 17 K.

Experimental Results

Energy dependence

Figure 1 shows the energy dependences of the superlattice reflections at the lowest temperature of 8.3 K. The same energy and polarization dependences as those for the AFQ+AFM phase in DyB2C2 is observed. Then, it is concluded that the phase below 17 K is the AFQ+AFM phase.

Temperature dependence

Figure 2 shows the temperature dependences of the integrated intensities of the superlattice reflections. It is noted that all of the reflections associated with the AFQ order appear below 17 K while the (1 0 2) reflection associated with the AFM order appears below 19 K. It is noteworthy that the broad anomaly at 19 K in the specific heat measurement is accompanied by such a clear emergence of the order parameter. Then, it is concluded that below $T_N=19K$ the system orders antiferromagnetically with k=<1 0 0> and below $T_Q=17$ K the AFQ order takes place.

Another interesting characteristic is the difference in the temperature dependences. Some reflections grow up

with normal curvature with critical exponent β ~0.33, while some grow up almost linearly with β more than 0.5.

Fig. 1 The energy dependences of superlattice reflections.

Temperature [K]

Fig. 2 Temperature dependences of the integrated intensities of the superlattice reflections. Lines are the fits to deduce the critical exponents.

References

- [1] K. Hirota et al., Phys. Rev. Lett. 84, 2706 (2000).
- [2] T. Matsumura et al., Phys. Rev. B 65, 094420 (2002).
- [3] H. Onodera et al., to be published.

* tmatsu@iiyo.phys.tohoku.ac.jp