Cross-over of magnetic and quadrupolar order in $\mathrm{Dy}_{0.8} \mathbf{G d}_{0.2} \mathbf{B}_{\mathbf{2}} \mathbf{C}_{\mathbf{2}}$

Takeshi MATSUMURA* ${ }^{1}$, Daisuke OKUYAMA ${ }^{1}$, Hironori NAKAO ${ }^{1}$, Youichi MURAKAMI ${ }^{1}$ Yusuke WAKABAYASHI ${ }^{2}$, Hiroshi SAWA ${ }^{2}$, Kazuma HIROTA ${ }^{1}$
Kentaro INDOH^{3}, Masato SAKATA ${ }^{3}$, Hideya ONODERA ${ }^{3}$
${ }^{1}$ Department of Physics, Tohoku University, Sendai 980-8578, Japan
${ }^{2}$ KEK-PF, Tsukuba, Ibaraki 305-0801, Japan
${ }^{3}$ Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

Introduction

$\mathrm{DyB}_{2} \mathrm{C}_{2}$ undergoes antiferroquadrupolar(AFQ) order below $\mathrm{T}_{\mathrm{Q}}=25 \mathrm{~K}$ and antiferromagnetic(AFM) order below $\mathrm{T}_{\mathrm{N}}=15 \mathrm{~K}$. Resonant x -ray scattering experiments successfully observed the superlattice reflections corresponding to the AFQ order, and the structure of the quadrupolar moments below T_{Q} was determined[1,2]. In the course of studies of the AFQ orders, an unusual phase called the phase IV, which appears when T_{N} crosses over T_{Q}, as observed in $\mathrm{Ce}_{\mathrm{x}} \mathrm{La}_{1-\mathrm{x}} \mathrm{B}_{6}$ and $\mathrm{HoB}_{2} \mathrm{C}_{2}$, has been attracting interests. Recently, Onodera has started to investigate the $\mathrm{Dy}_{1-\mathrm{x}} \mathrm{Gd}_{\mathrm{x}} \mathrm{B}_{2} \mathrm{C}_{2}$ system, where the Dy ions are substituted with Gd which has only spin moment, and has discovered the cross-over of T_{N} and $\mathrm{T}_{\mathrm{Q}}[3]$.

However, the signature of T_{N} is so vague. Specific heat only shows a broad anomaly around 19 K , which they claims to be T_{N}, while at 17 K there appears a sharp anomaly which they attributes to the AFQ order. The purpose of this experiment is to clarify the anomaly at 19 K and identify the phase below 17 K .

Experimental Results

Energy dependence

Figure 1 shows the energy dependences of the superlattice reflections at the lowest temperature of 8.3 K . The same energy and polarization dependences as those for the $\mathrm{AFQ}+\mathrm{AFM}$ phase in DyB2C2 is observed. Then, it is concluded that the phase below 17 K is the $\mathrm{AFQ}+\mathrm{AFM}$ phase.

Temperature dependence

Figure 2 shows the temperature dependences of the integrated intensities of the superlattice reflections. It is noted that all of the reflections associated with the AFQ order appear below 17 K while the ($\left.\begin{array}{lll}1 & 0 & 2\end{array}\right)$ reflection associated with the AFM order appears below 19 K . It is noteworthy that the broad anomaly at 19 K in the specific heat measurement is accompanied by such a clear emergence of the order parameter. Then, it is concluded that below $\mathrm{T}_{\mathrm{N}}=19 \mathrm{~K}$ the system orders antiferromagnetically with $\mathrm{k}=<100>$ and below $\mathrm{T}_{\mathrm{Q}}=17 \mathrm{~K}$ the AFQ order takes place.

Another interesting characteristic is the difference in the temperature dependences. Some reflections grow up
with normal curvature with critical exponent $\beta \sim 0.33$, while some grow up almost linearly with β more than 0.5 .

Fig. 1 The energy dependences of superlattice reflections.

Fig. 2 Temperature dependences of the integrated intensities of the superlattice reflections. Lines are the fits to deduce the critical exponents.

References

[1] K. Hirota et al., Phys. Rev. Lett. 84, 2706 (2000).
[2] T. Matsumura et al., Phys. Rev. B 65, 094420 (2002).
[3] H. Onodera et al., to be published.

[^0]
[^0]: * tmatsu@iiyo.phys.tohoku.ac.jp

