Anomalous Scattering Factor near Absorption Edge of Ge

Masami YOSHIZAWA^{*1}, ShengMing ZHOU¹, Riichirou NEGISHI¹, Isao MATSUMOTO¹, Tomoe FUKAMACHI¹ and Takaaki KAWAMURA² ¹Saitama Institute of Technology, Fusaiji, Okabe, Saitama 369-0293, Japan ²Univiersity of Yamanashi, Kofu, Yamanashi 400-8510, Japan

The measured anomalous scattering factor (ASF, f' + if'') near Ge K absorption edge traces a circular arc as shown in Fig.1¹). According to the quantum theory of X-ray resonant scattering, ASF can be given by the following equation in case of only one resonant mode,²)

 $f' + if'' \propto -1 / (\Delta \omega + i\Gamma / 2) \quad . \tag{1}$

Where, $\Delta \omega = \omega_{\rm in} - \omega_{\rm in} \omega_{\rm in}$ is resonant energy and Γ is the natural width of spectrum. The circle-like locus of f' + if'' in Fig.1 can be obtained by changing $\Delta \omega$ If the energy of the initial peak just above the edge in f'' curve in Fig.2 is assigned to be $\omega_{\rm M}$ and its height $\Delta f''_{\rm M}$ after subtracting the background to be the diameter of the circle in Fig.1, the following equation can be derived from equation (1)

 $\Delta f' + i\Delta f'' = -\Delta f''_{\rm M} / (x+i) \quad . \tag{2}$

Where $x = 2(\omega_M - \omega) / \Gamma$ and $\omega_M = \omega_K + \Gamma / 2$. Equation (2) is rewritten as

 $\Delta f' = -x \Delta f''_{M} / (x^{2} + 1), \quad \Delta f'' = \Delta f''_{M} / (x^{2} + 1).$ (3a,b)

In order to get the ASF $(f_C + if_C)$ in a real crystal, it is necessary to add $\Delta f + \Delta f'$ to the values calculated by the isolated atom model (IAM). That is

Fig.1 The Locus of the ASF in Ge. $O \Box \Delta$ (zero crossing method) and thick solid line (dispersion relation) are measured values. The dashed line and solid line are calculated values of the IAM with CLS³ and PH⁴).

Here f_{atom} and f'_{atom} are the real and imaginary parts of ASF given by the IAM. In the ASF of Ge crystal, $\Delta f'_{M}$ is determined to be 5.38 and $\Gamma/2$ is evaluated to be 2.5±0.5 eV. This value is five times larger than the calculated value (0.5eV) by using classical damping. From this result, the lifetime ($\tau = h / 2\pi \Gamma$) of the intermediate state is estimated to be 0.13±0.03 fs. Then f_{C} and f'_{C} (thick solid line) are obtained and shown in Fig.2. The ASFs determined by zero crossing method , the dispersion relation method (solid line) and the IAM³ (dashed line) are shown in Fig.2. It is clear that the values of f_{C} obtained by the present method are in good agreement with the zero crossing method and the dispersion method.

- 1) M. Yoshizawa et al., (2003), KEK Prog. Rep. 2002-2, 155.
- 2) T. Fukamachi and S. Hosoya (1975) Acta Cryst. A31, 215-220.
- 3) S. Sasaki, (1989) KEK Rep. 88-14 M/D ,1-136.
- L. G Parratt & C. F. Hempstead, (1954) Phys. Rev. 94,1593-1600.

Fig. 2 The measured and the calculated ASF.

* yoshizaw@sit.ac.jp