Anomalous Scattering Factor near Absorption Edge of Ge

Masami YOSHIZAWA* ${ }^{1}$, ShengMing ZHOU ${ }^{1}$, Riichirou NEGISHI ${ }^{1}$, Isao MATSUMOTO ${ }^{1}$, Tomoe FUKAMACHI ${ }^{1}$ and Takaaki KAWAMURA ${ }^{2}$
${ }^{1}$ Saitama Institute of Technology, Fusaiji, Okabe, Saitama 369-0293, Japan
${ }^{2}$ Univiersity of Yamanashi, Kofu, Yamanashi 400-8510, Japan

The measured anomalous scattering factor (ASF, $f+i f$ ') near Ge K absorption edge traces a circular arc as shown in Fig. $1^{1 \text { 1). }}$ According to the quantum theory of X-ray resonant scattering, ASF can be given by the following equation in case of only one resonant mode, ${ }^{2)}$

$$
\begin{equation*}
f+i f^{\prime} \propto-1 /(\Delta \omega+i \Gamma / 2) . \tag{1}
\end{equation*}
$$

Where, $\Delta \omega=\omega_{\mathrm{n}}-\omega, \omega_{\mathrm{n}}$ is resonant energy and Γ is the natural width of spectrum. The circle-like locus of $f+i f^{\prime}$ in Fig. 1 can be obtained by changing $\Delta \omega$. If the energy of the initial peak just above the edge in $f^{\prime \prime}$ curve in Fig. 2 is assigned to be ω_{M} and its height $\Delta f{ }^{\prime \prime}{ }_{\mathrm{M}}$ after subtracting the background to be the diameter of the circle in Fig.1, the following equation can be derived from equation (1)

$$
\begin{equation*}
\Delta f^{\prime}+i \Delta f^{\prime \prime}=-\Delta f^{\prime \prime}{ }_{\mathrm{M}} /(x+i) \tag{2}
\end{equation*}
$$

Where $\mathrm{x}=2\left(\omega_{\mathrm{M}}-\omega\right) / \Gamma$ and $\omega_{\mathrm{M}}=\omega_{\mathrm{K}}+\Gamma / 2$. Equation (2) is rewritten as

$$
\Delta f=-x \Delta f{ }^{\prime}{ }_{M} /\left(x^{2}+1\right), \quad \Delta f f^{\prime}=\Delta f f_{M} /\left(x^{2}+1\right) . \quad(3 \mathrm{a}, \mathrm{~b})
$$

In order to get the ASF $\left(f_{\mathrm{C}}+i f^{\prime}{ }_{\mathrm{C}}\right)$ in a real crystal, it is necessary to add $\Delta f^{\prime}+\Delta f^{\prime \prime}$ to the values calculated by the isolated atom model (IAM). That is

$$
\begin{equation*}
f_{\mathrm{C}}=\Delta f^{\prime}+f_{\text {atom }}, f^{\prime \prime}{ }_{\mathrm{C}}=\Delta f^{\prime \prime}+f^{\prime \prime} \text { atom } \tag{4a,b}
\end{equation*}
$$

$f_{G e}^{\prime}$

Fig. 1 The Locus of the ASF in $\mathrm{Ge} . \mathrm{O} \square \Delta$ (zero crossing method) and thick solid line (dispersion relation) are measured values. The dashed line and solid line are calculated values of the IAM with $\mathrm{CLS}^{3)}$ and PH^{4}.

Here $f_{\text {atom }}$ and $f^{\prime \prime}$ atom are the real and imaginary parts of ASF given by the IAM. In the ASF of Ge crystal, $\Delta f{ }^{\prime}{ }_{M}$ is determined to be 5.38 and $\Gamma / 2$ is evaluated to be $2.5 \pm 0.5 \mathrm{eV}$. This value is five times larger than the calculated value $(0.5 \mathrm{eV})$ by using classical damping. From this result, the lifetime $(\tau=h / 2 \pi \Gamma)$ of the intermediate state is estimated to be $0.13 \pm 0.03 \mathrm{fs}$. Then f_{C} and f " ${ }_{\mathrm{C}}$ (thick solid line) are obtained and shown in Fig.2. The ASFs determined by zero crossing method, the dispersion relation method (solid line) and the IAM^{3} (dashed line) are shown in Fig.2. It is clear that the values of f_{C} obtained by the present method are in good agreement with the zero crossing method and the dispersion method.

1) M. Yoshizawa et al., (2003), KEK Prog. Rep. 2002-2, 155.
2) T. Fukamachi and S. Hosoya (1975) Acta Cryst. A31, 215-220.
3) S. Sasaki, (1989) KEK Rep. 88-14 M/D ,1-136.
4) L. G. Parratt \& C. F. Hempstead, (1954) Phys. Rev. 94,1593-1600.

Fig. 2 The measured and the calculated ASF.

[^0]
[^0]: * yoshizaw@sit.ac.jp

