Analysis of Unfolding and Refolding of HIV-1 Protease

Hiroyuki KOGO¹, Kayoko TAKEUCHI¹, Masaki KOJIMA^{*1}, Hideshi INOUE¹, Hiroshi KIHARA², Kenji TAKAHASHI¹ ¹ School of Life Sci., Tokyo Univ. of Pharm. & Life Sci., Hachioji, Tokyo 192-0392, Japan

² Dept. of Physics, Kansai Med. Univ., Hirakata, Osaka 573-1136, Japan

Introduction

HIV-1 protease (HIV-1 PR) is an acid proteinase, essential for the maturation of the infectious virions. It consists of two identical subunits with 99 residues, which are bound non-covalently. The enzyme is unfolded at the high concentration of denaturants or under alkaline condition [1]. In the present report, we analyze the ureainduced unfolding of HIV-1 PR by the small angle X-ray scattering (SAXS) method.

Experimental

All measurements were performed at BL-15A with a CCD-based X-ray detector [2] at 20 °C. The exposure time was 24 s in one measurement, and the sample in the cuvette was exchanged every three times.

HIV-1 PR was expressed in *E.coli* and purified according to the method reported previously [3] with slight modifications. Sample solutions were prepared by mixing the enzyme solution (1 mg/ml in 10 mM Na acetate, pH 3.5) with the urea solution of each concentration. All sample solutions contained 1 mM dithiothreitol.

The data were corrected for distortion of images, nonuniformity of sensitivity, and contrast reduction of an Xray image intensifier [4] before analyses.

Results and Discussion

From the SAXS data, the radius of gyration (R_g) and the zero-angle scattering intensity (I(0)) at each concentration of urea were determined from the Guinier approximation. Fig. 1 shows the dependences of these parameters upon the urea concentration. From the figure, the midpoint concentration of urea were 3.3 M for R_g (Fig. 1(a)) and 3.6 M for I(0) (Fig. 1(b)), which is nearly the same as the values obtained by other experiments [1]. On the other hand, $\Delta G^{\rm H2O}$ values were estimated to be 9.83 kcal/mol for R_g and 8.94 kcal/mol for I(0), and were slightly lower than that in the reference [1].

The R_g value in the native state was estimated to be 21.2 A, and almost consistent with that calculated from the crystal structure. At high concentration of urea, the R_g and I(0) values were respectively 1.5 and 3 times as large as those in the native state. The increase of I(0) upon unfolding suggested a molecular association. Considering this effect, the R_g value of each subunit was estimated to increase slightly (by about 10 %) during unfolding. The structural features in this associable state are being

characterized further by other experimental methods such as CD spectroscopy.

References

- [1] S.K. Grant et al., Biochemistry 31, 9491 (1992)
- [2] Y. Amemiya et al., Rev. Sci. Instrum. 66, 2290 (1995).
- [3] E. Ido *et al.*, J. Biol. Chem. 266, 24359 (1991).
- [4] K. Ito et al., PF Activity Report 18, 275 (2001).

*mkojima@ls.toyaku.ac.jp

Fig. 1. Dependence of R_g (a) and I(0) (b) upon urea concentration for the unfolding of HIV-1 PR.