High resolution structures of the complexes of α -amylase with tripeptides

Li SHAN, Jian-Hua GAN, Zong-Xiang XIA*

State Key Laboratory of Bioorganic and Natural Products Chemistry,

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Introduction

The oligopeptides which mimic the function of carbohydrates are called glyco-replica peptides. However, the molecular mechanism of the oligopeptides to mimic carbohydrates is unknown. We have determined the high resolution structures of the complexes of α -amylase with three tripeptides to investigate the interactions of the tripeptides with α -amylase.

Experimental

Three tripeptides, RCA, RSA and KSA, were designed by computer modeling and synthesized by liquid phase synthesis.

The crystals of α -amylase from *B. licheniformis* were grown by vapor diffusion method. The crystals are 0.5-2.0 mm in length, 0.1-0.15 mm in both width and thickness.

The crystals of the three complexes were prepared by soaking α -amylase crystals in 10 mM RCA, RSA and KSA, respectively. They were cut to 0.3 mm long and frozen in the presence of 25% glycerol. The X-ray data were collected at station BL6A to 1.75, 1.80 and 1.90 A resolution respectively. The data were processed using HKL 2000 software, giving R_{sym} of 6.7, 7.2 and 7.8 % respectively and data completeness of 100 %.

The structures of the three complexes were solved using difference Fourier method, based on the structure of α -amylase from *B. licheniformis* ^[1] (PDB entry 1VJS), and they were refined using program CNS. The peptide fitting was carried out using TURBO-FRODO graphics software.

Results and discussion

The structures of the complexes of α -amylase with RCA, RSA and KSA refined at 1.75, 1.80 and 1.90 A resolution gave R-factors of 19.4, 18.6 and 20.4 %, and free R-factors of 21.4, 20.9 and 22.4 %, respectively.

The tripeptide is bound in the active site pocket of α amylase in each complex (Fig. 1). Taken as an example, the temperature factors of the atoms of RCA are in the range of 69-78 A². The guanidine group of the arginine forms salt bridge and hydrogen bonds to Asp328 of α amylase and five water molecules, and some of these water molecules are hydrogen bonded to Glu261 and Asp231 of α -amylase. Asp328, Asp231 and Glu261 correspond to the reported binding sites in the α -amylaseacarbose complex structure^[2].

References

[1] Hwang, K.Y. et al., Mol. Cell, 7, 251-258 (1997).
[2] Brzozowski, A. M. et al., Biochemistry, 36, 10837-10845 (1997).

* third.person@kek.jp

Fig. 1 α -amylase-RCA complex structure.