Interactions among calmodulin, calcium and TFP studied by solution x-ray scattering

Norio Matsushima*¹, Nobuhiro Hayashi², Yuji Jinbo³, Yoshinobu Izumi³ ¹School of Health Sciences, Sapporo Medical Univ., Sapporo, Hokkiado 060-8556, Japan ²Institute for Comprehensive Medical Science, Fujita Health Univ., Toyoake, Aichi 470-1192, Japan ³Graduate School of Engineeering, Yamagata Univ., Yonezawa, Yamagata 992-8510, Japan

Introduction

Calmodulin (CaM) is a ubiquitous Ca²⁺-binding protein of 148 residues that regulates a variety of physiological processes in a Ca²⁺-dependent manner. The regulation is achieved through the interaction of Ca²⁺-bound CaM with a large number of target enzymes. The CaM molecule in both Ca²⁺-bound and Ca²⁺-free states adopts an 'elongated' structure in which the two globular domains are connected by a highly flexible linker, while the structures of Ca²⁺-bound CaM complexed with a peptide from target enzymes adopt a compact globular shape caused by the bending of the domain linker. These structural studies suggest that the flexibility of the domain linker plays an important role in target recognition.

A very recent SAXS study provided evidence that, in solution, the structure of Ca^{2+} -bound CaM changes from an elongated shape to a compact globular shape upon the binding of two W-7 molecules [1] and four TFP molecules [2]. Here we studied structural change of CaM in the presence of TFP with molar ratios of 1:5 as a function of Ca^{2+} .

Here we performed small-angle x-ray scattering study to study how the binding of both Ca^{2+} and TFP to CaM influences the structural change of the CaM molecule.

Materials and Methods

The recombinant rat CaM was expressed in Escherichia coli and purified to homogeneity as previously described. For SAXS experiments, the recombinant was dissolved in Tris buffer (50 mM Tris-HCl, pH7.6) containing 120 mM NaCl. The protein concentration was determined by quantitative amino acid The TFP powder was dissolved in water analysis. containing 1% (v/v) dimethyl sulfoxide (DMSO), and added to the CaM solution. In every stage, the concentration of DMSO was kept at 1.0 %. Four series of CaM were prepared both in the presence of TFP with molar ratios of 1:5 and in the presence of Ca^{2+} with molar ratios of 0:0, 1:1, 1:2 and 1:5. Individual series were solutions at five protein concentrations of 4.0 to 18.0 mg/ml.

The measurements were performed using synchrotron orbital radiation with an instrument for SAXS installed at BL-10C of Photon Factory, Tsukuba. An X-ray wavelength of 1.488 Å was selected. The

samples were contained in a quartz cell with a volume of 80 µl, and the temperature was maintained at 25±0.1°C by circulating water through the sample holder. The reciprocal parameter, Q, equal to $4\pi \sin\theta/\lambda$, was calibrated by the observation of peaks from dried chicken collagen, where 2θ is the scattering angle and λ is the X-ray wavelength. Scattering data were collected for 250 or 300s at individual protein concentrations.

Results and Discussion

Guinier plots give the radius of gyration, Rg. The Rg values for CaM at zero concentration were estimated in the presence of TFP with molar ratios of 1:5 and in the presence of Ca²⁺ with molar ratios of 0:0, 1:1, 1:2 and 1:5, as shown in Table 1.

Table 1: The radius of gyration (*Rg*) for CaM in the presence of TFP with molar ratios of 1:5

Ca ²⁺ /CaM			
0	1	2	5
2.05 nm	1.90 nm	1.84 mm	1.76 nm

The Rg with Ca²⁺/CaM=0 shows that the Rg value for the Ca²⁺-free CaM with TFP (CaM:TFP=1:5) is about 1 Å smaller than that (2.15 nm) of Ca²⁺-free CaM alone [2]. The p(r) function of the Ca²⁺-free CaM with TFP shows a peak near 22 Å, which is consistent with that in the Ca²⁺saturated CaM-TFP complex. However, the shoulder near 40 Å seen in Ca²⁺-saturated CaM alone grows very weak or disappears in the Ca²⁺-free CaM with TFP. Consequently, the p(r) function of Ca²⁺-free CaM with TFP is relatively symmetrical. This suggests that the Ca²⁺ -free CaM with TFP exist as an ellipsoid in solution [2].

The Rg with Ca²⁺/CaM=5 shows that CaM changes from an elongated shape to a compact globular shape upon the binding of TFP molecules [2].

Interestingly, the present results indicate that the Rg values show no linearity with increasing molar ratio of Ca²⁺/CaM. We think that this may be due to a cooperativity.

References

[1] Osawa et al., FEBS Lett. 442, 173 (1999).

[2] Matsushima et al., Biochem. J. 347, 211 (2000).

* matusima@sapmed.ac.jp